Как сделать gps трекер для машины своими руками? Как сделать GPS-маячок для слежения за человеком и авто? Gps трекер для машины своими руками.

Добрый день (опционально вечер/ночь).

Сегодня будет обзор на GPS приемник и его применение на практике.


ПРЕДИСЛОВИЕ

В общем, я всегда хотел побаловаться с такого рода устройствами, хотелось иметь конкретно трекер, который пишет пройденный путь, но было одно но, хотелось, чтобы трекер был с дисплеем, я вообще люблю разные дисплеи и стараюсь их прикручивать во все, что только можно, такой вот фетиш.

Обзоров на этот GPS приемник было, из самых обширных, немного - штуки 4, один из них реально был хорош, остальные так, описывали в целом. Сильно много повторяться не буду.

Как обычно предупреждение:

Вся ответственность, а именно самостоятельное проникновение в корпус готового изделия с последующим нарушением его целостности работоспособности, лежит на человеке совершившим это действие.

Внешний вид

Размеры данного модуля не большие 35 х 24 мм, и он сможет найти свое место не только в носимой электронике, но и в RC - аппаратах.

В комплекте идет пассивная антенна:

При желании всегда можно заменить активной или изготовить самому, по этой методике:

На сегодняшний день модуль не является устаревшей моделью, и активно используется, + имеется поддержка производителя .

На рисунке ниже я показал, какие линии куда подключать, что бы GPS определился в компьютере:

Выглядит примерно так:

Затем устанавливаем приложение U-center, ссылку давал выше, и выбираем порт:

По умолчанию общаемся на 9600 бод.

Вот в целом работает, все что поймал в помещении:

Подключение модуля к Arduino

Подготовим программатор для прошивки:

Затем в Нано зашиваем этот скетч:

Дополнительная информация

// ArduinoISP // Copyright © 2008-2011 Randall Bohn // If you require a license, see // http://www.opensource.org/licenses/bsd-license.php // // This sketch turns the Arduino into a AVRISP using the following Arduino pins: // // Pin 10 is used to reset the target microcontroller. // // By default, the hardware SPI pins MISO, MOSI and SCK are used to communicate // with the target. On all Arduinos, these pins can be found // on the ICSP/SPI header: // // MISO °. . 5V (!) Avoid this pin on Due, Zero... // SCK . . MOSI // . . GND // // On some Arduinos (Uno,...), pins MOSI, MISO and SCK are the same pins as // digital pin 11, 12 and 13, respectively. That is why many tutorials instruct // you to hook up the target to these pins. If you find this wiring more // practical, have a define USE_OLD_STYLE_WIRING. This will work even when not // using an Uno. (On an Uno this is not needed). // // Alternatively you can use any other digital pin by configuring // software ("BitBanged") SPI and having appropriate defines for PIN_MOSI, // PIN_MISO and PIN_SCK. // // IMPORTANT: When using an Arduino that is not 5V tolerant (Due, Zero, ...) as // the programmer, make sure to not expose any of the programmer"s pins to 5V. // A simple way to accomplish this is to power the complete system (programmer // and target) at 3V3. // // Put an LED (with resistor) on the following pins: // 9: Heartbeat - shows the programmer is running // 8: Error - Lights up if something goes wrong (use red if that makes sense) // 7: Programming - In communication with the slave // #include "Arduino.h" #undef SERIAL #define PROG_FLICKER true // Configure SPI clock (in Hz). // E.g. for an ATtiny @ 128 kHz: the datasheet states that both the high and low // SPI clock pulse must be > 2 CPU cycles, so take 3 cycles i.e. divide target // f_cpu by 6: // #define SPI_CLOCK (128000/6) // // A clock slow enough for an ATtiny85 @ 1 MHz, is a reasonable default: #define SPI_CLOCK (1000000/6) // Select hardware or software SPI, depending on SPI clock. // Currently only for AVR, for other architectures (Due, Zero,...), hardware SPI // is probably too fast anyway. #if defined(ARDUINO_ARCH_AVR) #if SPI_CLOCK > (F_CPU / 128) #define USE_HARDWARE_SPI #endif #endif // Configure which pins to use: // The standard pin configuration. #ifndef ARDUINO_HOODLOADER2 #define RESET 10 // Use pin 10 to reset the target rather than SS #define LED_HB 9 #define LED_ERR 8 #define LED_PMODE 7 // Uncomment following line to use the old Uno style wiring // (using pin 11, 12 and 13 instead of the SPI header) on Leonardo, Due... // #define USE_OLD_STYLE_WIRING #ifdef USE_OLD_STYLE_WIRING #define PIN_MOSI 11 #define PIN_MISO 12 #define PIN_SCK 13 #endif // HOODLOADER2 means running sketches on the ATmega16U2 serial converter chips // on Uno or Mega boards. We must use pins that are broken out: #else #define RESET 4 #define LED_HB 7 #define LED_ERR 6 #define LED_PMODE 5 #endif // By default, use hardware SPI pins: #ifndef PIN_MOSI #define PIN_MOSI MOSI #endif #ifndef PIN_MISO #define PIN_MISO MISO #endif #ifndef PIN_SCK #define PIN_SCK SCK #endif // Force bitbanged SPI if not using the hardware SPI pins: #if (PIN_MISO != MISO) || (PIN_MOSI != MOSI) || (PIN_SCK != SCK) #undef USE_HARDWARE_SPI #endif // Configure the serial port to use. // // Prefer the USB virtual serial port (aka. native USB port), if the Arduino has one: // - it does not autoreset (except for the magic baud rate of 1200). // - it is more reliable because of USB handshaking. // // Leonardo and similar have an USB virtual serial port: "Serial". // Due and Zero have an USB virtual serial port: "SerialUSB". // // On the Due and Zero, "Serial" can be used too, provided you disable autoreset. // To use "Serial": #define SERIAL Serial #ifdef SERIAL_PORT_USBVIRTUAL #define SERIAL SERIAL_PORT_USBVIRTUAL #else #define SERIAL Serial #endif // Configure the baud rate: #define BAUDRATE 19200 // #define BAUDRATE 115200 // #define BAUDRATE 1000000 #define HWVER 2 #define SWMAJ 1 #define SWMIN 18 // STK Definitions #define STK_OK 0x10 #define STK_FAILED 0x11 #define STK_UNKNOWN 0x12 #define STK_INSYNC 0x14 #define STK_NOSYNC 0x15 #define CRC_EOP 0x20 //ok it is a space... void pulse(int pin, int times); #ifdef USE_HARDWARE_SPI #include "SPI.h" #else #define SPI_MODE0 0x00 class SPISettings { public: // clock is in Hz SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) : clock(clock) { (void) bitOrder; (void) dataMode; }; private: uint32_t clock; friend class BitBangedSPI; }; class BitBangedSPI { public: void begin() { digitalWrite(PIN_SCK, LOW); digitalWrite(PIN_MOSI, LOW); pinMode(PIN_SCK, OUTPUT); pinMode(PIN_MOSI, OUTPUT); pinMode(PIN_MISO, INPUT); } void beginTransaction(SPISettings settings) { pulseWidth = (500000 + settings.clock - 1) / settings.clock; if (pulseWidth == 0) pulseWidth = 1; } void end() {} uint8_t transfer (uint8_t b) { for (unsigned int i = 0; i < 8; ++i) { digitalWrite(PIN_MOSI, (b & 0x80) ? HIGH: LOW); digitalWrite(PIN_SCK, HIGH); delayMicroseconds(pulseWidth); b = (b << 1) | digitalRead(PIN_MISO); digitalWrite(PIN_SCK, LOW); // slow pulse delayMicroseconds(pulseWidth); } return b; } private: unsigned long pulseWidth; // in microseconds }; static BitBangedSPI SPI; #endif void setup() { SERIAL.begin(BAUDRATE); pinMode(LED_PMODE, OUTPUT); pulse(LED_PMODE, 2); pinMode(LED_ERR, OUTPUT); pulse(LED_ERR, 2); pinMode(LED_HB, OUTPUT); pulse(LED_HB, 2); } int error = 0; int pmode = 0; // address for reading and writing, set by "U" command unsigned int here; uint8_t buff; // global block storage #define beget16(addr) (*addr * 256 + *(addr+1)) typedef struct param { uint8_t devicecode; uint8_t revision; uint8_t progtype; uint8_t parmode; uint8_t polling; uint8_t selftimed; uint8_t lockbytes; uint8_t fusebytes; uint8_t flashpoll; uint16_t eeprompoll; uint16_t pagesize; uint16_t eepromsize; uint32_t flashsize; } parameter; parameter param; // this provides a heartbeat on pin 9, so you can tell the software is running. uint8_t hbval = 128; int8_t hbdelta = 8; void heartbeat() { static unsigned long last_time = 0; unsigned long now = millis(); if ((now - last_time) < 40) return; last_time = now; if (hbval > 192) hbdelta = -hbdelta; if (hbval < 32) hbdelta = -hbdelta; hbval += hbdelta; analogWrite(LED_HB, hbval); } static bool rst_active_high; void reset_target(bool reset) { digitalWrite(RESET, ((reset && rst_active_high) || (!reset && !rst_active_high)) ? HIGH: LOW); } void loop(void) { // is pmode active? if (pmode) { digitalWrite(LED_PMODE, HIGH); } else { digitalWrite(LED_PMODE, LOW); } // is there an error? if (error) { digitalWrite(LED_ERR, HIGH); } else { digitalWrite(LED_ERR, LOW); } // light the heartbeat LED heartbeat(); if (SERIAL.available()) { avrisp(); } } uint8_t getch() { while (!SERIAL.available()); return SERIAL.read(); } void fill(int n) { for (int x = 0; x < n; x++) { buff[x] = getch(); } } #define PTIME 30 void pulse(int pin, int times) { do { digitalWrite(pin, HIGH); delay(PTIME); digitalWrite(pin, LOW); delay(PTIME); } while (times--); } void prog_lamp(int state) { if (PROG_FLICKER) { digitalWrite(LED_PMODE, state); } } uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) { SPI.transfer(a); SPI.transfer(b); SPI.transfer©; return SPI.transfer(d); } void empty_reply() { if (CRC_EOP == getch()) { SERIAL.print((char)STK_INSYNC); SERIAL.print((char)STK_OK); } else { error++; SERIAL.print((char)STK_NOSYNC); } } void breply(uint8_t b) { if (CRC_EOP == getch()) { SERIAL.print((char)STK_INSYNC); SERIAL.print((char)b); SERIAL.print((char)STK_OK); } else { error++; SERIAL.print((char)STK_NOSYNC); } } void get_version(uint8_t c) { switch © { case 0x80: breply(HWVER); break; case 0x81: breply(SWMAJ); break; case 0x82: breply(SWMIN); break; case 0x93: breply("S"); // serial programmer break; default: breply(0); } } void set_parameters() { // call this after reading parameter packet into buff param.devicecode = buff; param.revision = buff; param.progtype = buff; param.parmode = buff; param.polling = buff; param.selftimed = buff; param.lockbytes = buff; param.fusebytes = buff; param.flashpoll = buff; // ignore buff (= buff) // following are 16 bits (big endian) param.eeprompoll = beget16(&buff); param.pagesize = beget16(&buff); param.eepromsize = beget16(&buff); // 32 bits flashsize (big endian) param.flashsize = buff * 0x01000000 + buff * 0x00010000 + buff * 0x00000100 + buff; // AVR devices have active low reset, AT89Sx are active high rst_active_high = (param.devicecode >= 0xe0); } void start_pmode() { // Reset target before driving PIN_SCK or PIN_MOSI // SPI.begin() will configure SS as output, so SPI master mode is selected. // We have defined RESET as pin 10, which for many Arduinos is not the SS pin. // So we have to configure RESET as output here, // (reset_target() first sets the correct level) reset_target(true); pinMode(RESET, OUTPUT); SPI.begin(); SPI.beginTransaction(SPISettings(SPI_CLOCK, MSBFIRST, SPI_MODE0)); // See AVR datasheets, chapter "SERIAL_PRG Programming Algorithm": // Pulse RESET after PIN_SCK is low: digitalWrite(PIN_SCK, LOW); delay(20); // discharge PIN_SCK, value arbitrarily chosen reset_target(false); // Pulse must be minimum 2 target CPU clock cycles so 100 usec is ok for CPU // speeds above 20 KHz delayMicroseconds(100); reset_target(true); // Send the enable programming command: delay(50); // datasheet: must be > 20 msec spi_transaction(0xAC, 0x53, 0x00, 0x00); pmode = 1; } void end_pmode() { SPI.end(); // We"re about to take the target out of reset so configure SPI pins as input pinMode(PIN_MOSI, INPUT); pinMode(PIN_SCK, INPUT); reset_target(false); pinMode(RESET, INPUT); pmode = 0; } void universal() { uint8_t ch; fill(4); ch = spi_transaction(buff, buff, buff, buff); breply(ch); } void flash(uint8_t hilo, unsigned int addr, uint8_t data) { spi_transaction(0x40 + 8 * hilo, addr >> 8 & 0xFF, addr & 0xFF, data); } void commit(unsigned int addr) { if (PROG_FLICKER) { prog_lamp(LOW); } spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0); if (PROG_FLICKER) { delay(PTIME); prog_lamp(HIGH); } } unsigned int current_page() { if (param.pagesize == 32) { return here & 0xFFFFFFF0; } if (param.pagesize == 64) { return here & 0xFFFFFFE0; } if (param.pagesize == 128) { return here & 0xFFFFFFC0; } if (param.pagesize == 256) { return here & 0xFFFFFF80; } return here; } void write_flash(int length) { fill(length); if (CRC_EOP == getch()) { SERIAL.print((char) STK_INSYNC); SERIAL.print((char) write_flash_pages(length)); } else { error++; SERIAL.print((char) STK_NOSYNC); } } uint8_t write_flash_pages(int length) { int x = 0; unsigned int page = current_page(); while (x < length) { if (page != current_page()) { commit(page); page = current_page(); } flash(LOW, here, buff); flash(HIGH, here, buff); here++; } commit(page); return STK_OK; } #define EECHUNK (32) uint8_t write_eeprom(unsigned int length) { // here is a word address, get the byte address unsigned int start = here * 2; unsigned int remaining = length; if (length > param.eepromsize) { error++; return STK_FAILED; } while (remaining > EECHUNK) { write_eeprom_chunk(start, EECHUNK); start += EECHUNK; remaining -= EECHUNK; } write_eeprom_chunk(start, remaining); return STK_OK; } // write (length) bytes, (start) is a byte address uint8_t write_eeprom_chunk(unsigned int start, unsigned int length) { // this writes byte-by-byte, page writing may be faster (4 bytes at a time) fill(length); prog_lamp(LOW); for (unsigned int x = 0; x < length; x++) { unsigned int addr = start + x; spi_transaction(0xC0, (addr >> 8) & 0xFF, addr & 0xFF, buff[x]); delay(45); } prog_lamp(HIGH); return STK_OK; } void program_page() { char result = (char) STK_FAILED; unsigned int length = 256 * getch(); length += getch(); char memtype = getch(); // flash memory @here, (length) bytes if (memtype == "F") { write_flash(length); return; } if (memtype == "E") { result = (char)write_eeprom(length); if (CRC_EOP == getch()) { SERIAL.print((char) STK_INSYNC); SERIAL.print(result); } else { error++; SERIAL.print((char) STK_NOSYNC); } return; } SERIAL.print((char)STK_FAILED); return; } uint8_t flash_read(uint8_t hilo, unsigned int addr) { return spi_transaction(0x20 + hilo * 8, (addr >> 8) & 0xFF, addr & 0xFF, 0); } char flash_read_page(int length) { for (int x = 0; x < length; x += 2) { uint8_t low = flash_read(LOW, here); SERIAL.print((char) low); uint8_t high = flash_read(HIGH, here); SERIAL.print((char) high); here++; } return STK_OK; } char eeprom_read_page(int length) { // here again we have a word address int start = here * 2; for (int x = 0; x < length; x++) { int addr = start + x; uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF); SERIAL.print((char) ee); } return STK_OK; } void read_page() { char result = (char)STK_FAILED; int length = 256 * getch(); length += getch(); char memtype = getch(); if (CRC_EOP != getch()) { error++; SERIAL.print((char) STK_NOSYNC); return; } SERIAL.print((char) STK_INSYNC); if (memtype == "F") result = flash_read_page(length); if (memtype == "E") result = eeprom_read_page(length); SERIAL.print(result); } void read_signature() { if (CRC_EOP != getch()) { error++; SERIAL.print((char) STK_NOSYNC); return; } SERIAL.print((char) STK_INSYNC); uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00); SERIAL.print((char) high); uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00); SERIAL.print((char) middle); uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00); SERIAL.print((char) low); SERIAL.print((char) STK_OK); } ////////////////////////////////////////// ////////////////////////////////////////// //////////////////////////////////// //////////////////////////////////// void avrisp() { uint8_t ch = getch(); switch (ch) { case "0": // signon error = 0; empty_reply(); break; case "1": if (getch() == CRC_EOP) { SERIAL.print((char) STK_INSYNC); SERIAL.print("AVR ISP"); SERIAL.print((char) STK_OK); } else { error++; SERIAL.print((char) STK_NOSYNC); } break; case "A": get_version(getch()); break; case "B": fill(20); set_parameters(); empty_reply(); break; case "E": // extended parameters - ignore for now fill(5); empty_reply(); break; case "P": if (!pmode) start_pmode(); empty_reply(); break; case "U": // set address (word) here = getch(); here += 256 * getch(); empty_reply(); break; case 0x60: //STK_PROG_FLASH getch(); // low addr getch(); // high addr empty_reply(); break; case 0x61: //STK_PROG_DATA getch(); // data empty_reply(); break; case 0x64: //STK_PROG_PAGE program_page(); break; case 0x74: //STK_READ_PAGE "t" read_page(); break; case "V": //0x56 universal(); break; case "Q": //0x51 error = 0; end_pmode(); empty_reply(); break; case 0x75: //STK_READ_SIGN "u" read_signature(); break; // expecting a command, not CRC_EOP // this is how we can get back in sync case CRC_EOP: error++; SERIAL.print((char) STK_NOSYNC); break; // anything else we will return STK_UNKNOWN default: error++; if (CRC_EOP == getch()) SERIAL.print((char)STK_UNKNOWN); else SERIAL.print((char)STK_NOSYNC); } }

После этого выбираем Ваш контроллер Pro Mini, указываем программатор ArduinoISP и шьем контроллер, используя команду Скетч -> Загрузить через программатор и нажимаем кнопку Reset на Pro mini, пойдет прошивка контроллера (у меня проходит только со второй попытки, нужно набраться терпения):

Как выше говорил, я очень люблю ко всяким гаджетам подвязывать дисплеи, ну просто жуть как, поэтому данный «проект» мое желание не обошло стороной.

Что нам для всего этого потребуется:

В общем, собрал весь хлам, который валялся без дела:

1. SD card module, очень огромный, поэтому я старался как можно скорее избавится от него.

2. Дисплей на базе контроллера PCD8544, всем известный нокиа дисплей.

3. Карта памяти на 1Гб, с не популярным стандартом MiniSD, вообще был без идеи куда ее воткнуть, а хочется все пустить в дело, вот и пускай поработает на благо навигации.

4. Потребуется мозг, большой такой мозг Pro Mini на чипе 328P.

Как писал выше, будем шить через Arduino Nano с прошитым в нее загрузчиком.

Вообще я очень старался засунуть весь проект в нано, ну просто очень. Не получается, либо отказываемся от карты памяти, либо от дисплея.

5. Конечно же, сам модуль + антенна, как писал выше можно изготовить самому.

6. Ах да, чуть не забыл, потребуется еще корпус иначе, что за устройство без корпуса.

В качестве корпуса были закуплены, еще раз , но в серебряном виде, на пробу. Скажу так, мне абсолютно не понравился серебряный цвет, черный смотрится лучше.

Когда все комплектующие есть в наличии, можно все это подключить и запрограммировать.

Подключаем к Pro Mini по следующей схеме:

Дисплей:

RST - D6
CE - D7
DC - D5
DIN - D4
CLK - D3
VCC - 5V (опционально в моем случае, в остальных 3.3В)
Light - GND
GND - GND

Подсветка мне была не нужна, и я не стал ее подключать.

CS-D10
MOSI-D11
MISO-D12
SCK-D13
GND - GND
5V - VCC (опционально в моем случае, в некоторых при наличии преобразователя подключаем на 3.3В)

GPS модуль:

RX-D8
TX-D2
GND - GND
VCC-3.3 (3.3 это предел!)

Не забываем подключать антенну на модуль, питание я брал с Нано тк. была подключена для отладки, далее все будет переделано на аккумулятор.

Примерный вид:

Код прост и незамысловат, для использования Вам понадобится, пожалуй . Далее . Остальные являются встроенными. По коду, строка - time*0.000001+5, по сути я привел время в удобоваримый вид и добавил часовой пояс. Можно этого не делать и получать чистые результаты.

Ещё один нюанс по библиотеке дисплея заключается в следующем у дисплея, включая с нулевой строкой, всего влезет 6 строк. Что довольно мало, поэтому нужно сразу решать, какую информацию выводить, что-то придется выводить символами, экономя место. Дисплей перерисовывается каждую секунду, при этом обновляя и записывая информацию, поступающую со спутников.

При ошибке чтения файла или отсутствия доступа до карты SD будет выводиться сообщение SD- , в остальных случаях SD+ .

#include #include #include #include //CS-D10, MOSI-D11, MISO-D12, SCK-D13, GND - GND, 5V - VCC (опционально в моем случае, в некоторых при отсутствии преобразователя подключаем на 3.3В) File GPS_file; TinyGPS gps; SoftwareSerial gpsSerial(2, 8);//RX - 8 pin, TX - 2 pin static PCD8544 lcd; //RST - D6, CE - D7, DC - D5, DIN - D4, CLK - D3, VCC - 5V (опционально, при наличии преобразователя на 3.3В линии), Light - GND, GND - GND bool newdata = false; unsigned long start; long lat, lon; unsigned long time, date; void setup() { lcd.begin(84, 48); gpsSerial.begin(9600); Serial.begin(9600); pinMode(10, OUTPUT); if (!SD.begin(10)){ lcd.setCursor(0, 0); lcd.println("SD-"); return;} lcd.setCursor(0, 0); lcd.println("SD+"); GPS_file = SD.open("GPSLOG.txt", FILE_WRITE); if (GPS_file){ Serial.print("Writing to test.txt..."); GPS_file.print("LATITUDE"); GPS_file.print(","); GPS_file.print("LONGITUDE"); GPS_file.print(","); GPS_file.print("DATE"); GPS_file.print(","); GPS_file.print("TIME"); GPS_file.print(","); GPS_file.print("ALTITUDE"); GPS_file.println(); GPS_file.close(); Serial.println("done."); }else{ Serial.println("error opening test.txt"); } lcd.setCursor(0,3); lcd.print("ALT: "); lcd.setCursor(0,2); lcd.print("SPD: "); lcd.setCursor(0,4); lcd.print("LAT: "); lcd.setCursor(0,5); lcd.print("LON: "); } void loop() { if (millis() - start > 1000){ newdata = readgps(); if (newdata){ start = millis(); gps.get_position(&lat, &lon); gps.get_datetime(&date, &time); lcd.setCursor(50,1); lcd.print(date); lcd.setCursor(55,0); lcd.print(time*0.000001+5); lcd.setCursor(22, 4); lcd.print(lat); lcd.setCursor(22, 5); lcd.print(lon); lcd.setCursor(22, 2); lcd.print(gps.f_speed_kmph()); lcd.setCursor(22, 3); lcd.print(gps.f_altitude()); } } GPS_file = SD.open("GPSLOG.txt", FILE_WRITE); if(GPS_file){ GPS_file.print(lat); GPS_file.print(","); GPS_file.print(lon); GPS_file.print(","); GPS_file.print(date); GPS_file.print(","); GPS_file.print(time*0.000001+5); GPS_file.print(","); GPS_file.print(gps.f_altitude()); GPS_file.println(); GPS_file.close(); }else{ lcd.setCursor(0, 0); lcd.println("SD-"); } } bool readgps(){ while (gpsSerial.available()){ int b = gpsSerial.read(); if("\r" != b){ if (gps.encode(b)) return true;}} return false;}

После прошивки Вы увидите нечто подобное (в скетче вывод даты отредактирован к правому краю под временем):

С расположением элементов можно поиграться, был такой вариант, но понял, что усреднение координат выдает огромную погрешность и отказался.

В качестве элементов питания я использую LI-ion аккумулятор. Покупаю акб для экшн - камер оптом и использую их в своих поделках + ко всему всегда могут пригодиться для экшн - камеры, которой пользуюсь в походах. .

Используя макетную плату, собираем все воедино:

На корпус для карты памяти наклеил кусок изоленты, тк он соприкасается с контактами зарядника для батареи. Карту памяти прошиваем в FAT16.

Потом запускаем и проверяем, не забыв поставить выключатель:

Обработка результатов

Результаты представляются в виде текстового файла:

Разделитель колонок выставляем - запятая:

Далее можно загрузить все это дело в ПО Google Earth Pro, используя вкладку Файл -> Открыть , открываем наш файлик и выбираем столбцы, отвечающие за широту и долготу и получаем похожий трек (тк я был в одном месте, то получил россыпь точек):

Можно выбрать точку и отобразить все количество точек, которые ей соответсвуют:

Итог

В общем логер работает, писать трек можно, с последующим редактированием на карте. Так же в программном обеспечении от гугла, трек можно сохранить в более популярном формате, которые поддерживают другие карты.

Свое любопытство удовлетворил с лихвой.

Из минусов это маленькая антенна, порой холодный старт затягивается до 10 минут (зависит от того, насколько сильна облачность, время суток). Антенну конечно можно заменить, на самодельную, либо докупить, на али довольно много активных антенн.

Спасибо за потраченное время.

Обновление от 22.05.18

1. Заменил корпус и изготовил антенну из представленной мною ссылке. (Уменьшил время холодного старта, быстрее находит спутники, значительно быстрее.)

2. Вынес разъем дебага наружу (поигравшись, буду писать прошивку поинтереснее, выкладывать буду сюда же)

3. Для уменьшения занимаемого места, разобрал дисплей и подпаялся к нему.

Пока вид такой.

Планирую купить +130 Добавить в избранное Обзор понравился +170 +299

Автомобильный gps трекер – это устройство слежения за перемещением автомобиля. У прибора есть несколько вариантов передачи сигнала его пользователю: на сотовый телефон, на компьютер через сервер. Спутниковый gps трекер для машины получает сигнал спутника и определяет свои координаты на местности, которые передает пользователю.

При выборе устройства слежения необходимо определиться с тем для каких целей трекер будет использоваться. Если это автомобильный gps трекер, то по своим размерам, параметрам, техническим характеристикам он лучше всего подходит для скрытой установки именно в автомобиле.

Такой gps трекер для машины можно совершенно незаметно установить в транспорте, так, что его никто не обнаружит. Для слежения за людьми или животными больше подойдет персональное устройство.

Трекер для автомобиля работает как:

  • приемник спутникового сигнала;
  • передатчик сигнала спутника в формате GSM на принимающее устройство (сотовый телефон, компьютер, ноутбук или планшет);
  • трекер автономное устройство, снабженное источником питания – батареей или аккумулятором.

Тем, кому необходимо контролировать сразу несколько автомобилей имеет смысл подключиться к gps трекеру для мониторинга. Это система позволяет постоянно контролировать машину и имеет ряд положительных характеристик.

Принцип действия GPS трекера

Преимущества мониторинга:

  • постоянно определяются координаты машины;
  • отслеживается график перемещения транспорта;
  • анализируется скорость и расход топлива;
  • данные сохраняются в течение двенадцати месяцев;
  • бесплатная возможность контролировать одновременно пять приборов,

Все текущие данные выводятся на монитор смартфона или планшета в режиме онлайн.

Трекер специальное устройство слежения за автомобилем, в персональном варианте и за человеком. Работа его зависит напрямую от спутниковой связи, так как без нее устройство не может определить местоположение автомобиля. Для контроля за большим количеством объектов целесообразно подключиться к системе мониторинга.

Изготовление прибора

Каждый человек в развитых странах знает, что такое gps навигация, зачем она нужна и как ей пользоваться. В магазинах продается множество приборов, для отслеживания людей, автомобилей и даже домашних животных. Однако не все знают, что можно сделать простой gps трекер для машины своими руками.

Все гаджеты в современном мире оснащены маяком. С его помощью можно моментально определить местоположение любого объекта с высокой точностью. Хорошие модели стоят дорого, но gps маяк для авто сделать самостоятельно совсем не сложно, рассмотрим несколько способов.

Программа. Если есть смартфон, со встроенным gps-модулем, задача становится совсем простой. Требуется скачать приложение Loki в GooglePlay для работы маяка, зарегистрироваться в личном кабинете, заполнить параметры отслеживаемого устройства. Обязательно проверьте настройки часового пояса. Все, после этого телефон может работать как gps-маяк.

Gps трекер для машины можно сделать своими руками не только из телефона, для этого подойдет любое устройство, имеющее gps-модуль: ноутбук, коммуникатор.

Принцип работы везде один и тот же – устанавливаете приложение, выполнить настройки.

Из простого телефона. Телефон тоже можно использовать для того, чтобы сделать трекер. Помимо самого аппарата потребуется gps модуль, приемник и часть зарядного устройства, подключаемая к телефону. Для начала необходимо зачистить провода, которые будут составлять основу кабеля. Затем они припаиваются к gps-модулю.

Плата GPS трекера

Добавляем аккумулятор к GPS модулю

Готовая цепочка из всех комплектущих

Полученную систему следует подключить к телефону через разъем для зарядного устройства. Включите gps-приемник и настройте все данные. Такой gps маяк для машины, сделанный своими руками будет отправлять данные в виде сообщения с координатами, или точек на GoogleMaps.

Плюсы и минусы самодельной конструкции

К сожалению, сделать идеальное устройство без недостатков не представляется возможным, но все же оно имеет некоторые достоинства

Плюсы самодельного gps трекера:

  • стоимость оборудования в разы меньше, чем стоимость аналогичного, приобретенного в магазине;
  • функционал самодельного устройства такой же, как и у промышленного гаджета;
  • при необходимости покупки дополнительного оборудования, оно все равно получится недорогим;
  • как правило, самодельные устройства – гораздо долговечнее, чем их заводские аналоги.

Вид платы для GPS трекера с двух сторон:

Не стоит забывать и про недостатки трекера, сделанного своими руками:

  1. из-за размеров существует сложность, при размещении в салоне автомобиля;
  2. точность работы трекера зависит от качества мобильной сети, так как основой является телефон;
  3. прочность конструкции далека от совершенной, при плохой спайке провода могут отойти друг от друга.

Заводские маяки тоже имеют ряд недостатков, какой выбрать – самодельный или покупной, каждый решает сам. В первую очередь gps трекер нужен для отслеживания автомобиля, поэтому выбирать устройство надо исходя из его надежности.

Установка на автомобиль

Проще всего установить gps на машину – вставив его в прикуриватель, но это совсем не целесообразно. Поскольку при угоне преступник сразу заметит устройство и выключит его, да и к тому же постоянно торчащий провод будет мешаться.

Как установить gps трекер на автомобиль:

  • купить понижающий DC/DC преобразователь (продаются на алиэкспресс);
  • подключить провод от телефона к преобразователю;
  • подключить преобразователь к аккумулятору автомобиля.

Куда спрятать gps маяк в автомобиле? На форумах автомобилистов можно найти массу советов по расположению трекера, однако, следовать им не стоит. Ведь такие форумы могут читать и угонщики, поэтому они в первую очередь полезут проверять именно самые распространенные места. Включите воображение, придумайте какое-то свое место. При установке прибора не забудьте учесть необходимую длину провода.

Песочница

весёлый усач 27 апреля 2016 в 12:12

GPS трекер для автомобиля своими руками

  • DIY или Сделай сам * ,
  • Автомобильные гаджеты * ,
  • Гаджеты *

Это уже вторая версия трекера. Первый позволял отслеживать объект только посредством СМС. Что, сами понимаете, не совсем удобно. Поэтому было принято решение создать вторую версию, но уже для работы с сервисами GPS-мониторинга. Не все задуманное еще реализовано, но основные функции уже работают.

Трекер каждую минуту отправляет данные на бесплатный сервер GPS-мониторинга по протоколу Wialon IPS v1.1: данные о местоположении, скорость, курс направления движения. Также реализована возможность настройки и запрос координат по СМС с любого номера.

Возможны следующие команды:

1. Настройка трекера:

$0000#SETUP#111111111111111;2222#

0000 - старый пароль или пароль по умолчанию (при первой настройке).
1111111111111111 - ID устройства который задан на сервере (произвольные 15 цифр).
2222 - Новый пароль. В дальнейшем все команды должна начинаться с него. Пароль должен совпадать с тем что задан на сервере GPS мониторинга.

В ответ приходит сообщение вида: «ID-1111111111111111; PASS-2222» с новым ID и новым паролем.

0000- ваш пароль.

В ответ приходит сообщение вида: «A;111111;222222;N3333.33333;E4444.44444;5;1»

«A» - Данные достоверны или «V» - данные устарели.
«111111» - время UTC.
«222222» - дата.
«N3333.33333» - широта.
«E4444.44444» - долгота.
«5» - скорость в км/ч.
«1» - питание от основного источника или «0» - питание от встроенного аккумулятора.

Если какие то данные не доступны то вместо них передается «NA».

3. Сигнал тревоги:

В этом случае данные о местоположении передаются на сервер с интервалом 30 сек. В ответ приходит сообщения вида: «ALARM ON». Повторная отправка команды выключает сигнал тревоги. В ответ приходит сообщения вида: «ALARM OFF».

В ответ приходит сообщения вида: «Vash balans 50.01r.»

Если в любой команде будет отправлен неправильный пароль, то в ответ приходит сообщения вида: «Password ERROR».

Теперь техническая часть.

Основа: Arduino PROMINI 3.3V 8MHz, GSM модем NEOWAY M590, GPS модуль UBLOX NEO-6M, внешняя активная антенна GPS.
Питание: DC-DC преобразователь на основе MP2307DN, контроллер заряда батареи STC4054, аккумулятор 3.7v 900mAh.

Время работы от аккумулятора 9 часов, при условии, что аккумулятор не новый.

Что касается сервера GPS-мониторинга - таких сервисов много. При желании можно работать с другим сервером, для этого в коде достаточно поменять IP-адрес и номер порта сервера. Главное, чтобы сервер поддерживал работу с протоколом Wialon IPS v1.1. Корпус сделан из ПВХ. Получился, правда, на вид не очень, но особо и не старался, все равно его будет не видно. В дальнейшем хочу добавить управление внешним устройством или каким-нибудь реле и получение каких-нибудь параметров о состоянии авто, для этого на плате предусмотрено два входа и один выход. Программно пока это не реализовано.

Затрачено было приблизительно 1500 - 2000 руб.

Все нюансы с технической и программной стороны описывать сейчас не буду. Кого заинтересует - пишите, постараюсь всем ответить.

GPS-маячок является устройством, которое позволяет отслеживать перемещение похищенного или эвакуированного автомобиля и ускоряет сроки его поиска. Кроме этого, миниатюрные девайсы могут использоваться для контроля за местонахождением людей или грузов. Часто маячки называют трекерами, но такое название является ошибочным, поскольку устройства выполняют разные функции.

[ Скрыть ]

Принцип работы и область применения

Маячок находится в спящем режиме и включается по запрограммированному циклу. При активации происходит обмен параметрами со спутником или станциями сотовой связи стандарта GSM, а затем устройство уходит в спящий режим. Из-за особенностей работы информация от маячка имеет вид отдельных точек, которые можно соединить ломаной прямой.

В стандартном графике маяк выходит на связь до четырех раз в сутки. В случае необходимости режим работы прибора можно изменить через систему сотовой связи и увеличить частоту включения до одного раза в 5-10 минут. Постоянный обмен информацией позволит ускорить поиск машины или человека, но может быстро разрядить аккумуляторную батарею маячкового устройства. В режиме подачи сигнала раз в сутки маячок способен функционировать на одном аккумуляторе три-четыре года. Переключение устройства в режим тревоги сокращает время работы до 12-15 суток.

Маячок является отличным средством для пассивной защиты машины от угона. Малые размеры позволяют устанавливать устройство под обшивками автомобиля, а периодический режим работы обеспечивает устойчивость против сканеров или . Маяки применяются для слежения за маршрутом поставки груза путем размещения устройства в контейнере или в упаковке. При пропаже груза остается возможность отследить местоположение тары и попытаться выйти на след похитителей. Часто такие девайсы используются для контроля за местонахождением детей или пожилых людей.

Разновидности

Существуют различные GPS-маячки:

  1. С возможностью подключения к замку зажигания автомобиля. Это позволяет устройству автоматически переключаться в режим частого обмена координатами со станциями при попытке несанкционированного запуска двигателя.
  2. Встречаются конструкции маячков со встроенными микрофонами, которые позволяют дистанционно прослушивать салон автомобиля.
  3. Имеются модели маяков с отдельно выведенной кнопкой для активации режима тревоги. Устройства носятся в кармане или устанавливаются на транспортном средстве. Нажатие на кнопку производится при попытке ограбления или угона. Прибор стал популярен для подачи ребенком сигнала о помощи. При нажатии клавиши на сотовый телефон родителей поступают координаты места подачи тревоги.
  4. В виде часов. Одним из образцов устройств для контроля за перемещением человека являются часы Smart Watch A19, которые могут отслеживать местонахождение в реальном времени и сохранять историю перемещений. Имеется возможность ограничения территории перемещения владельца. При выходе за пределы на телефон родителей поступает текстовое сообщение или звонок.
  5. Выпускаются маячки в виде брелков, которые позволяют родителям осуществлять двухстороннюю связь с ребенком. Маяк с небольшими габаритами и весом легко размещается в кармане. При этом устройство имеет герметичный корпус, который продлевает срок службы изделия.

Часы Smart Watch A19 Маячок в виде брелка

Применение заводских устройств не требует специальной установки и подключения. Достаточно разместить или другом охраняемом объекте и установить связь с мобильным телефоном или смартфоном.

Кроме отдельных устройств, имеется возможность отслеживания ребенка или груза по сигналам смартфона. У операторов сотовой связи есть специальные тарифные планы, в рамках которых можно видеть местоположение второго абонента, например, тариф МТС «Ребенок под присмотром».

Инструкция

При желании сэкономить владелец автомобиля может сделать маяк своими руками.

Самодельные устройства можно делать:

  • на базе смартфона;
  • на основе обычного мобильного телефона;
  • на базе самостоятельно собранного прибора (без применения телефона).

Обзор маяка Starline M17 предоставлен каналом АвтоАудиоЦентр.

Что понадобится?

При изготовлении маяка в виде смартфона потребуются:

  • два смартфона, из которых один будет установлен в машине;
  • две СИМ-карты с возможностью доступа в интернет;
  • установленное и зарегистрированное программное обеспечение.

Для сборки маяка из телефона понадобятся:

  • мобильный телефон;
  • приемник сигналов GPS;
  • модуль передачи данных стандарта GPRS;
  • зарядное устройство;
  • инструменты и материалы — паяльник, припой, флюс, нож для зачистки.

Опытные пользователи могут попытаться изготовить маячок самостоятельно на основе деталей и материалов из списка:

  • модуль приема и передачи SIM808;
  • антенна для приема сигналов GPS;
  • управляющий контроллер ATmega8;
  • транзисторы для усилителя сигнала;
  • выпрямитель напряжения;
  • материалы для изготовления печатной платы;
  • материалы для пайки.

Пошаговые этапы

Процесс работ будет отличаться в зависимости от того, на основе чего изготавливается девайс.

На базе смартфона

При использовании смартфона для изготовления маячка порядок действий следующий:

  1. Установить смартфон в авто. Рекомендуется заранее продумать место монтажа. К девайсу должен быть беспроблемный доступ для замены или подзарядки аккумулятора.
  2. Установить программное обеспечение на оба устройства.
  3. Подключиться к сети и зайти на официальный сайт разработчика программного обеспечения.
  4. Зарегистрировать устройства. После процедуры регистрации станут доступны настройки приложений.
  5. Ввести в отслеживающий прибор данные смартфона, выступающего в роли маячка (IMEI номер).
  6. Проверить совпадение настроек часовых поясов на приемнике и передатчике.
  7. Запустить программное обеспечение и протестировать корректность работы.
  8. Настроить режим работы установленного в салоне смартфона на периодический (маяк).

Нужно учесть, что при работе в режиме маяка батарея смартфона будет разряжена за 2-3 дня. Поэтому можно подключить дополнительное питание от штатного аккумулятора автомобиля. Проводка должна проводиться незаметно, иметь высокое качество изготовления и защищаться плавким предохранителем соответствующей мощности. При неквалифицированном прокладывании кабелей есть риск короткого замыкания и воспламенения машины.

На основе телефона

Для изготовления маячкового устройства на базе мобильного телефона необходимо выполнить шаги:

  1. Продумать схему установки девайса.
  2. Отрезать провод от зарядного устройства со стороны трансформатора. Длина кабеля выбирается в соответствии со схемой расположения маяка.
  3. Зачистить концы провода и припаять их к выходам модуля GPRS (в соответствии с инструкцией к изделию).
  4. Установить штекер проводки в гнездо на мобильнике.
  5. Подключить приемник сигнала и синхронизировать работу приемника и передатчика.

Полностью самодельное устройство

При самостоятельном изготовлении и установке маячка нужно выполнить действия:

  1. Установить на модуль SIM808 выносную антенну для приема и передачи сигнала маяка.
  2. Самостоятельно сделать двухстороннюю печатную плату для размещения компонентов. Возможно создание односторонней платы, но она будет иметь большие габариты.
  3. Установить элементы на плате и пропаять контакты.
  4. Прошить модуль управления.
  5. Запустить маяк и протестировать работу.
  6. Установить девайс в удобном месте и подключить к штатному или собственному аккумулятору. Дальнейшая настройка ведется по аналогичной смартфонам и телефонам схеме.

Одна из схем самодельного маяка GPS представлена на примере устройства Старлайн

Разработка печатных плат, изготовление и настройка маяка требуют хорошего знания электротехники. Поэтому полностью самодельные маяки встречаются редко.

Плюсы и минусы

К положительным сторонам самодельных маячков относят:

  • быстрое изготовление устройства для слежения;
  • низкая стоимость изделия;
  • функциональность самодельного маячка не уступает фабричным девайсам;
  • возможность настройки прибора.
  • габариты самодельного маяка больше, чем у фабричных конструкций;
  • риск отключения из-за применения в схеме нескольких компонентов, соединенных проводами;
  • малый срок работы от штатного аккумулятора.

Последний недостаток можно компенсировать установкой более емкой батареи, но это увеличит размеры и стоимость конструкции. Помимо этого, в схеме появятся лишние провода и разъемы, которые могут окислиться или отключиться от вибрации во время движения.

Система навигации прочно вошла в нашу жизнь. Все современные автомобили оборудованы gps-трекером, позволяющим быстро и точно определять координаты в любой момент времени. Качественные модели стоят достаточно дорого, поэтому умельцы используют самодельный gps трекер. Существует несколько вариантов, как его сделать.

Автомобильные отслеживающие устройства бывают двух типов: стационарные и портативные. Стационарные устанавливаются непосредственно на заводе и включены в электронную систему автомобиля, а портативные устанавливаются самостоятельно владельцем.

Главной задачей gps трекера является защита авто, а значит устанавливаться он должен так, чтобы максимально обезопасить устройство от нахождения. Можно разместить gps-трекер в любом месте салона. Установка снаружи подразумевает дополнительную внешнюю защиту прибора.

Помимо определения местоположения трекер имеет ряд других функций, например, контроль работы двигателя – блокировка в случае угона, или осуществление прослушки салона авто. Различные модели могут замыкать работу электроники, бензонасоса и других систем.

Портативные модели схожи по своему устройству, они представляют небольшой блок с разъемом для питания, гнездом для sim-карты и антеннами. Управление происходит при помощи sms-команд с телефона или другого гаджета.

Самый простой способ стать владельцем устройства – это сделать самодельный gps трекер из смартфона или обычного телефона. Прибор будет не хуже покупного.

Принцип работы прибора похож на работу черного ящика самолета, он фиксирует весь пройденный путь, расход топлива и некоторые другие данные. В начале движения автомобиля прибор автоматически включается и моментально сообщает владельцу об изменении положения транспортного средства.

Достойные модели нередко стоят очень дорого, а простые отличаются сомнительным качеством, если нет необходимости в навороченном оборудовании можно сделать трекер самостоятельно.

GPS трекер из смартфона

Смартфоны имеют встроенный gps-модуль, который используется как трекер. Сделать это очень просто. При помощи приложения Loki(для Android) в личном кабинете требуется настроить все данные, касающиеся объекта наблюдения. Важно проверить настройки даты и времени для точности работы.

  1. интервал отправки сообщений;
  2. автозапуск устройства;
  3. использование внешних источников питания;
  4. уведомления.

Когда сервер для gps трекера периодически становится недоступен, приложение автоматически начинает отсылать через равные промежутки времени сообщения, для установления связи.

Для корректной работы версия Android должна быть, не ниже, чем 4.1.2, тогда путь будет отображаться как серия точек на карте.

При установке смартфона на лобовое стекло при помощи штатива, можно использовать его для съемки видео. Видео gps трекер ведет сьемку на протяжении всего пути.

GPS трекер из обычного телефона

Когда нет смартфона с gps-модулем, но есть обыкновенный телефон, подойдет следующий вариант. Помимо самого телефона понадобится переходник – часть зарядки с разъемом для прибора, а также gps-модуль.

Для начала работы необходимо зачистить острым ножом все провода, чтобы их можно было припаять к gps модулю. Затем подключить полученную конструкцию к телефону при помощи зарядного кабеля. Если все сделано правильно, то можно включить приемник и настроить телефон на получение сигнала от него.

GPS трекер из обычного мобильного телефона

Данные будут приходить в виде сообщений, есть возможность подключить GoogleMaps, тогда координаты будут отображаться, как точки на карте.

Такое устройство, как фото gps трекер, работать конечно не сможет, так как передавать изображение попросту неоткуда.

GPS трекер без использования телефона

Существует еще один вариант, но подойдет он только для тех, кто разбирается в электронике.

Чтобы собрать самодельный gps трекер потребуется:

  • gps-модуль, рассматриваемая модель относится к категории дешевых. Изготовители пишут об использовании мощной батареи. Заявлено, что холодный старт составляет менее 1 минуты$
  • gsm-приемник/передатчик – SIM900, может поддерживать GSM и GPRS. Покрытие gprs есть везде, поэтому проблем с передачей координат возникать не будет$
  • плата Arduinonano

Схема gps трекера довольно простая:

Создать такой трекер реально, но встает другая проблема, как спрятать это устройство, чтобы оно было подсоединено к источнику питания и при этом корректно функционировало.

Не у всех есть нужные знания и умения, чтобы сделать прибор, поэтому купить готовое оборудование или сделать самому – каждый решает, исходя из своих требований и возможностей. Главное помнить для чего все-таки предназначается устройство, и какие функции необходимы.

Читайте также: