Предохранитель многоразовый 25 ампер. Самовосстанавливающиеся предохранители компании Littelfuse

Самовосстанавливающиеся предохранители POLYFUSE® компании Littelfuse представляют собой полимерные терморезисторы с положительным температурным коэффициентом (PTC). В ряде приложений они становятся отличной заменой стандартным плавким предохранителям.

Для долгой и надежной работы электронных цепей необходимо обеспечить их защиту от перегрузок по току и напряжению. Традиционным способом защиты от перегрузки по току является использование плавких или самовосстанавливающихся предохранителей. Самовосстанавливающиеся предохранители – это терморезисторы с положительным температурным коэффициентом (Positive Temperature Coefficient, PTC).

Главным особенностью PTC является резкое скачкообразное изменение сопротивления при разогреве. Именно это свойство используется для защиты от перегрузок по току. При увеличении тока выше уровня срабатывания, PTC разогревается и размыкает цепь.

Современные PTC изготавливаются из полимерных материалов.

Компания Littelfuse предлагает различные типы полимерных самовосстанавливающихся термопредохранителей (PPTC):

  • PPTC для поверхностного монтажа различных типоразмеров (0402, 0603, 0805, 1206, 1210, 1812, 2016, 2920). Для них характерны токи срабатывания от 300 мА до 14 А;
  • выводные PPTC, которые имеют диапазон токов срабатывания 0,16…23,8 А;
  • PPTC типа Battery Strap, которые оптимизированы для приложений с батарейным питанием (ноутбуки, планшеты и другие). Они имеют низкопрофильное исполнение и малое сопротивление.

Свойства PPTC в значительной степени определяются особенностями их конструкции. Рассмотрим ее подробнее.

Устройство и принцип работы PPTC

Существует несколько основных компаний, которые производият PPTC. Каждая из них запатентовала и использует свою марку: Polyfuse (Littelfuse), PolySwitch (TE Connectivity), Semifuse (ATC Semitec), Fuzetec (Fuzetec Technology), Multifuse (Bourns). Несмотря на отличия в названии, все PPTC имеют одинаковый принцип работы и сходную структуру. Рассмотрим ее на примере самовосстанавливающихся предохранителей производства компании Littelfuse.

PPTC представляет собой пластину непроводящего полимерного материала (рисунок 1). Как правило, это полиэтилен. При низких температурах полимер имеет преимущественно кристаллическое строение. Однако монокристаллическая структура не образуется. Это значит, что между отдельными кристаллическими участками оказываются незаполненные пространства. В процессе изготовления в эти пространства внедряют проводящий элемент – графит.

Благодаря графитовым каналам в неразогретом состоянии PPTC является проводником с низким собственным сопротивлением.

При разогреве выше определенной температуры перехода (обычно Тперехода порядка 125°C), молекулы полимера получают дополнительную энергию, и кристаллическая структура начинает трансформироваться в аморфную. Этот процесс сопровождается механическим расширением. Полимер вытесняет графит. В результате графитовые каналы разрываются, сопротивление резко увеличивается, а PPTC переходит в непроводящее состояние (рисунок 1, рисунок 2).

Когда температура предохранителя понижается, полимер начинает кристаллизоваться. Графитовые каналы образуются вновь, что приводит к возвращению проводящих свойств. В этом и состоит суть самовосстановления предохранителя. Стоит отметить, что величина сопротивления после восстановления всегда больше первоначальной. Об учете этого свойства будет сказано ниже.

Число переходов от проводящего состояния к непроводящему и обратно оказывается практически неограниченным. Это значит, что при отсутствии катастрофических факторов PPTC является, по сути, вечным предохранителем.

При использовании PPTC в качестве токоограничителя важным оказывается его свойство саморазогрева. В нормальном состоянии PPTC находится в проводящем состоянии. При протекании тока он, как и все элементы, рассеивает мощность Pd = I²R, где R – собственное сопротивление предохранителя. Если ток достаточно мал, то мала рассеиваемая мощность. В этом случае перегрев компонента оказывается незначительным, и большого роста сопротивления из-за саморазогрева не происходит.

Однако если ток имеет большое значение, то происходит значительное выделение тепла. Если температура превысит Tперехода – PPTC перейдет в непроводящее состояние и электрическая цепь окажется разомкнутой. В этом и состоит суть использования PPTC в качестве элемента защиты от перегрузок по току. Если аварийное состояние устранено, то предохранитель остывает и восстанавливает проводящие свойства.

Основные характеристики PPTC

Основными эксплуатационными характеристиками PPTC являются электрические и временные параметры, а так же температурные зависимости.

Ток удержания (Ihold), А – максимальный ток, который может пропускать PPTC без перехода в непроводящее состояние при заданной температуре окружающего воздуха (обычно указывается для температуры 20…25°C).

Ток срабатывания (Itrip), А – минимальный ток, при котором PPTC переходит в непроводящее состояние при заданной температуре окружающего воздуха.

В большинстве случаев токовые характеристики оказываются основными при выборе предохранителя.

Ток утечки. PPTC в непроводящем состоянии имеет конечное сопротивление. Это значит, что он не в состоянии полностью разорвать цепь, и через нее могут протекать токи утечки. Иногда этот параметр указывают в документации.

Максимальный ток (Imax), А – максимальный ток, который PPTC может выдержать без разрушения.

Максимальное напряжение (Vmax), В – максимальное напряжение, которое может выдержать PPTC без повреждения при протекании максимального тока Imax. Очевидно, что значение Vmax должно покрывать требования конкретного приложения. При этом следует учитывать не только номинальные значения напряжений, но и возможность возникновения помех. Например, в легковых автомобилях номинальное напряжение бортовой сети не превышает 16 В, а уровень помех может превышать 100 В.

Мощность рассеивания при переходе (Pd), Вт – мощность, рассеиваемая PPTC при переходе в непроводящее состояние при заданной температуре окружающего воздуха.

Как было отмечено в предыдущем разделе, при восстановлении PPTC его сопротивление не принимает исходное значение. Оно оказывается выше. Сопротивления PPTC до монтажа, после монтажа и после восстановления будут отличаться. В документации приводят несколько различных параметров сопротивления.

Минимальное начальное сопротивление (Rmin), Ом – минимальное сопротивление PPTC в проводящем состоянии до монтажа на плату.

Максимальное сопротивление после восстановления (Rimax), Ом – минимальное сопротивление PPTC после одного часа восстановления при заданной температуре окружающего воздуха.

Время срабатывания, с – характеризует время перехода PPTC в непроводящее состояние при протекании тока. Имеет сильную зависимость от величины тока и температуры окружающей среды. Чем больше ток и температура, тем быстрее происходит переход. Диапазон времен срабатывания начинается от единиц миллисекунд.

Рабочий диапазон температур, °C, как правило, составляет -40…85°C. В этом диапазоне предохранитель не достигает температуры перехода.

Большая часть характеристик PPTC имеет сильную зависимость от температуры. Наиболее важной для практического применения является температурная зависимость тока срабатывания. Она носит линейный характер (рисунок 3). Из рисунка видно, что ток срабатывания увеличивается в три раза при переходе от 85°С до – 40°С. Аналогичные зависимости имеют и другие параметры. Эти особенности следует учитывать при проектировании схем защиты.

Несмотря на то, что традиционные плавкие предохранители имеют множество достоинств, PPTC являются незаменимыми во множестве приложений.

Качественное сравнение традиционных плавких предохранителей и PPTC

В большинстве случаев выбор между обычными плавкими предохранителями и PPTC делается исходя из требований конкретного приложения. Преимущества и недостатки каждого из решений определяются принципом работы этих защитных элементов (таблица 1).

Таблица 1. Качественное сравнение плавких предохранителей и PPTC

Параметр Плавкий предохранитель Самовосстанавливающийся PPTC
Число использований Однократное Многократное
Затраты на обслуживания Замена при каждом срабатывании Отсутствуют
Качество ограничения Полный разрыв цепи Есть токи утечки
Токи утечки, мА Отсутствуют До сотен
Минимальный уровень ток срабатывания Единицы А Сотни мА
Максимальный уровень тока ограничения, А Тысячи Десятки
Максимальное напряжение, В Типовое: до 600 Типовое: до 60
Максимальная рабочая температура, °С 125 85
Температурная зависимость тока срабатывания Слабая Сильная
Величина сопротивления в проводящем состоянии, мОм Десятки Сотни
Время срабатывания, мс Десятки Десятки

Плавкий предохранитель представляет собой металлический проводник (или проволоку), который плавится при возникновении перегрузки по току. При этом для восстановления проводящей цепи необходимо заменить предохранитель. В итоге, для эксплуатации оборудования потребуется обслуживающий персонал, что в большинстве случаев крайне нежелательно. PPTC свободны от этого недостатка.

С другой стороны, PPTC не способны полностью разорвать электрическую цепь. Они имеют конечное значение сопротивления. Это приводит к наличию токов утечки. Для многих приложений это может быть неприемлемо. Плавкие предохранители полностью разрывают цепь.

В общем случае, плавкие предохранители используются для более мощных цепей. Типовые значения токов срабатывания для них начинаются от единиц А. PPTC подходят для маломощных приборов, которые необходимо защищать от перегрузок, начиная от сотен миллиампер.

Верхняя граница токов для плавких предохранителей значительно превышает возможности PPTC и составляет тысячи ампер.

Ограничение величины мощности защищаемых цепей происходит и за счет собственного сопротивления предохранителей в проводящем состоянии. Плавкие предохранители имеют сопротивление в несколько раз меньше, чем у PPTC.

Еще одним преимуществом плавких предохранителей является меньшая зависимость от температуры окружающей среды (рисунок 3).

Диапазон рабочих температур у PPTC более узкий. Они имеют максимальную рабочую температуру 85°С, в то время как обычные предохранители могут работать при 125°С.

Важным параметром при выборе типа защитного элемента является максимальное рабочее напряжение. У PPTC типовым является напряжение до 60 В. Для плавких предохранителей типовое напряжение достигает сотен вольт.

Современная портативная электроника накладывает ограничения на габариты используемых компонентов. PPTC для поверхностного монтажа выполняются в миниатюрных корпусах, в том числе – 0402. Это делает их незаменимыми в ноутбуках, сотовых телефонах и других гаджетах.

Подводя итог приведенным рассуждениям, можно утверждать, что оба типа предохранителей имеют как достоинства, так и недостатки. Выбор между ними можно сделать только с учетом особенностей конкретного приложения.

PPTC будут предпочтительны в целом ряде случаев:

  • в приложениях с требованием минимальных затрат на обслуживание;
  • для слаботочных и низковольтных цепей;
  • в портативной электронике с ограничениями к габаритам элементов;
  • в потребительской, бытовой и другой электронике, работающей в узком температурном диапазоне.

Приведем конкретные примеры таких приложений (рисунок 4): сети с использованием Power Over Ethernet, USB1.1 и USB 2.0, сотовые телефоны и зарядные устройства, компьютерные интерфейсы, например, IEEE 1394 FireWire, домашние телефоны и так далее.

Обзор PPTC компании Littelfuse

Компания Littelfuse предлагает самовосстанавливающиеся предохранители POLYFUSE® для разных типов монтажа:

  • PPTC для поверхностного монтажа серий , ;
  • выводные PPTC серий , ;
  • PPTC типа Battery Strap, оптимизированные для приложений с батарейным питанием.

Наиболее популярными разновидностями самовосстанавливающихся предохранителей являются PPTC для поверхностного монтажа и выводные. Рассмотрим их более подробно.

SMD PPTC. Номенклатура SMD-предохранителей включает в себя десять серий (таблица 2). Все серии выполняются для рабочего диапазона температур -40…85°C.

Таблица 2. SMD PPTC производства компании Littelfuse

Наименование Типоразмер Ток удержания, А Ток
срабатывания, А
Максимальное
напряжение, В
Максимальный
ток, А
0402L 0402 (1005) 0,1…0,5 0,3…1,0 6 40/50 -40…85
0603 (1608) 0,04…0,5 0,12…1,0 6…15 40
0805 (2012) 0,10…1,10 0,3…2,00 6…24 40/100
1206 (3216) 0,125…2,00 0,29…3,5 6…30 100
1210 (3225) 0,05…2,0 0,15…4 6…30 10/100
1812 (4532) 0,10…3,0 0,3…5 6…60 10/20/40/100
2016 (5041) 0,30…2,00 0,6…4,2 6…60 20/40
2920 (7351) 0,30…5,00 0,6…10 6…60 10/40
0,13 0,26 60 3
0402…2920 0,1…7,0 0,3…14 6/12 40/50

Минимальное значение тока удержания составляет 40 мА (серия ). Максимальное значение – 7 А (Серия LoRho, корпус 2920).

Диапазон возможных значений тока срабатывания начинается от 300 мА (серия ) и ограничивается величиной 14 А (Серия LoRho, корпус 2920).

Для серии LoRho характерны наименьшие значения сопротивлений в проводящем состоянии: Rmin от 1 мОм, R1max от 7 мОм (корпус 2920).

Наименьшими габаритами обладает серия 0402L. Длина корпуса для них составляет 1 мм, а ширина – 0,5 мм.

Выводные PPTC. Перечень выводных PPTC включает в себя семь серий (таблица 3). Диапазон рабочих температур для всех выводных самовосстанавливающихся предохранителей составляет -40…85°C.

Таблица 3. Выводные PPTC от Littelfuse

Наименование Ток удержания, А Ток срабатывания, А Максимальное
напряжение, В
Максимальный ток, А Диапазон рабочих температур, °C
0,75…2,50 1,3…5 6/16 40 -40…85
2,50…14,00 4,7…23,8 16 100
0,90…9,00 1,8…18 30 40
0,10…3,75 0,2…7,5 60 40
0,20…3,75 0,4…7,5 72 40
0,08…0,18 0,16…0,65 60 3/10
0,15…0,16 0,3…0,32 60 3

Наиболее низковольтной серией является USBR. Для нее рабочее напряжение составляет 6 В. Максимальным рабочим напряжением обладает серия – 60 В в проводящем состоянии и до 600 В в режиме прерывания тока.

Минимально доступное значение тока удержания достигается в серии – всего 80 мА, а максимальное значение в 14 А характерно для представителей серии . Для этой же серии достигается максимальное значение тока срабатывания – 23,8 А.

Как видно из представленного обзора, пользователю предлагается широкий выбор PPTC. Для нахождения оптимального предохранителя для стандартных и типовых приложений можно воспользоваться рекомендациями инженеров Littelfuse (таблица 4).

Таблица 4. Области применения PPTC производства Littelfuse

Наименование
Телекоммуникационное оборудование
Требования Ul60950, TIA-968-A, GR-1089 + + +
Требования ITU-T + + +
CPE (Customer Premises Equipment) + + +
Аналоговая телефония + + +
T1/E1/J1 и HDSL + + +
ISDN + + +
ADSL + + +
Кабельная телефония + + +
PBX/KTS и Key Telephone System + + +
Компьютерная техника
Процессоры + + + +
USB + + + + + + + + +
IEEE1284 + + + + + +
IEEE 802.3 + + + + +
IEEE 1394 + + + +
Порты ввода/вывода + + + + + + +
PC Card + + + + + + + + +
SCSI + + + + + + +
Видео порт + + + + + + +
ЖК-мониторы + + + + + + + + +
Потребительская электроника
Set Top Box + + + + +
Микрофоны +
Считыватели карт памяти + +
Мобильные телефоны + + + + + +
AC/DC-адаптеры + + + + + + + + + +
Входы портативных устройств + + + + + + + +
Управление двигателями + + + + + +
Высоко-индуктивные цепи + + + + + +
Медицинское оборудование
Измерительные цепи + + +

Если же предполагается применение PPTC в нестандартных схемах, то стоит воспользоваться предложенным компанией Littelfuse стандартным алгоритмом выбора.

Алгоритм выбора PPTC компании Littelfuse

Алгоритм, предлагаемый инженерами Littelfuse, состоит из нескольких шагов.

  • На первом этапе необходимо определить основные электрические характеристики нагрузки: номинальные рабочие ток и напряжение, максимально допустимый ток, температуру окружающей среды, максимальную длительность нахождения в режиме перегрузки по току. Кроме того, следует спрогнозировать параметры возможных аварийных ситуаций и помех: значение возможного тока перегрузки, уровень напряжения помех. Дополнительными требованиями могут стать ограничения по габаритам и допустимому значению сопротивления предохранителя. Если для приложения предъявляются требования по стандартизации, то это также следует учесть.
  • Вторым шагом является выбор соответствующего требованиям PPTC.
  • Далее следует проверить, не выходят ли значения токов удержания и срабатывания за рамки допустимых значений во всем рабочем диапазоне температур. Аналогичным образом следует проанализировать время срабатывания. Если время срабатывания будет слишком большим, защищаемое устройство может выйти из строя. С другой стороны, слишком раннее срабатывание – также нежелательное явление.
  • Следует проверить, что выбранный PPTC соответствует требованиям по уровням напряжения с учетом помех.
  • Если требуется – необходимо проверить ограничения на габариты устанавливаемого предохранителя.
  • Наконец, необходимо проверить функционирование схемы в реальных условиях.

Заключение

Компания Littelfuse выпускает широкий спектр пассивных компонентов, таких как плавкие предохранители, самовосстанавливающиеся предохранители, TVS-диоды и так далее.

Полимерные самовосстанавливающиеся PPTC, по сравнению с плавкими предохранителями, имеют как достоинства, так и недостатки. Тем не менее, в ряде приложений PPTC оказываются незаменимыми (POE, USB, IEEE 1394 Firewire и других).

Богатый выбор наименований позволит разработчикам найти наиболее подходящий предохранитель как для стандартных приложений, так и для особенных уникальных устройств.

Литература

  1. Positive Temperature Coeficient (PTC) Thermistor Products. PRODUCT CATALOG & DESIGN GUIDE. 2008, Littelfuse.
  2. Electronics Circuit Protection. Product Selection Guide. 2013, Littelfuse.
  3. Why does USB 2.0 need Circuit Protection? 2013, Littelfuse.
  4. Документация на компоненты взята с официального сайта Littelfuse http://www.littelfuse.com/.

В комментариях к моей прошлой статье меня неоднократно корили за то, что не упомянул способ защиты с использованием самовосстанавливающегося предохранителя. Чтобы исправить эту несправедливость поначалу хотел просто добавить в статью дополнительную схему защиты и короткое к ней пояснение. Однако решил, что тема самовосстанавливающихся предохранителей заслуживает отдельной публикации. Дело в том, что устоявшееся их название не слишком отражает суть вещей, а копаться в даташитах и разбираться в принципе работы при применении таких “элементарных” компонентов, как предохранитель, часто начинают уже после того, как начала глючить первая партия плат. Хорошо если не серийная. Итак, под катом вас ждёт попытка разобраться, что же это за зверь такой PolySwitch , оригинальное название, кстати, лучше отражает суть прибора, и понять с чем его едят, как и в каких случаях имеет смысл его использовать.

Физика тёплого тела.

PolySwitch , это PPTC (Polymeric Positive Temperature Coefficient) прибор, который имеет положительный температурный коэффициент сопротивления. По правде, гораздо больше общих черт он имеет с позистором, или биметаллическим термопредохранителем, чем с плавким, с которым его обычно ассоциируют не в последнюю очередь благодаря усилиям маркетологов.
Вся хитрость заключается в материале из которого наш предохранитель изготовлен - он представляет собой матрицу из не проводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек.

Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце-концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После остывания прибора происходит процесс кристаллизации и предохранитель снова становится превосходным проводником.
Как выглядит температурная зависимость сопротивления видно из следующего рисунка

На кривой отмечено несколько характерных для работы прибора точек. Наш предохранитель является отличным проводником пока температура находится в рабочем диапазоне Point1 < T

Идеальный сферический конь в вакууме.

Пора переходить от теории к практике. Соберём простую схему защиты нашего ценного устройства, настолько простую, что изображённая по ГОСТу она выглядела бы просто неприлично.

Что же будет происходить, если в цепи вдруг возникнет недопустимый ток, превышающий ток срабатывания? Сопротивление материала из которого прибор изготовлен начнёт возрастать. Это приведёт к увеличению падения напряжения на нём, а значит и рассеиваемой мощности равной U*I. В результате температура растёт, это снова приводит к… В общем начинается лавинообразный процесс нагрева прибора с одновременным увеличением сопротивления. В результате проводимость прибора падает на порядки и это приводит к желаемому уменьшению тока в цепи.
После того как прибор остывает его сопротивление восстанавливается. Через некоторое время, в отличие от предохранителя с плавкой вставкой, наш Идеальный Предохранитель снова готов к работе!
Идеальный ли? Давайте вооружившись нашими скромными познаниями в физике прибора попробуем разобраться в этом.

Гладко было на бумаге, да забыли про овраги.

Пожалуй, главная проблема заключается во времени. Время вообще такая субстанция, которую очень трудно победить, хотя многим очень хотелось… Но не будем о политике - ближе к нашим полимерам. Как вы наверное уже догадались, я веду к тому, что изменение кристаллической структуры вещества гораздо более длительный процесс чем перестройка дырок с электронами, например в туннельном диоде. Кроме этого, для того чтобы разогреть прибор до нужной температуры, требуется некоторое время. В результате, когда ток через предохранитель вдруг превысит пороговое значение, его ограничение происходит совсем не мгновенно. При токах, близких к пороговому, этот процесс может занять несколько секунд, при токах близких к максимально допустимому для прибора, доли секунды. В результате за время срабатывания такой защиты сложное электронное устройство успеет выйти из строя, возможно, не один десяток раз. В подтверждение привожу типичный график зависимости времени срабатывания (по вертикали) от вызвавшего это срабатывание тока (по горизонтали) для гипотетического PTVC прибора.

Обратите внимание, что на графике приведены для сравнения две зависимости, снятые при разных температурах окружающей среды. Надеюсь вы ещё помните, что первопричиной перестройки кристаллической структуры служит температура материала, а не протекающий через него ток. Это значит, что при прочих равных, для того чтобы разогреть прибор до состояния метаморфозы от более низкой температуры необходимо затратить больше энергии чем от более высокой, а значит, и процесс этот в первом случае займёт больше времени. Как следствие, получаем зависимость таких важнейших параметров прибора, как максимальный гарантированный ток нормальной работы и гарантированный ток срабатывания от температуры окружающей среды.

Прежде чем привести график уместно упомянуть об о основных технических характеристиках данного класса приборов.

  • Максимальное рабочее напряжение Vmax - это максимально допустимое напряжение, которое может выдерживать прибор без разрушения при номинальном токе.
  • Максимально допустимый ток Imax - это максимальный ток, который прибор может выдержать без разрушения.
  • Номинальный рабочий ток Ihold - это максимальный ток, который прибор может проводить без срабатывания, т.е. без размыкания цепи нагрузки.
  • Минимальный ток срабатывания Itrip - это минимальный ток через прибор, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.
  • Первоначальное сопротивление Rmin, Rmax - это сопротивление прибора до первого срабатывания (при получении от изготовителя).

В нижней части графика находится рабочая область прибора. Что произойдёт в средней части зависит, судя по всему, от взаимного расположения звёзд на небе, ну а побывав в верхней части графика прибор отправится в путешествие (trip), которое вызовет метаморфозы его кристаллической структуры и как следствие срабатывание защиты. Ниже приведена таблица с данными реальных приборов. Разница в токе срабатывания в зависимости от температуры впечатляет!

Таким образом, в устройствах предназначенных для работы в широком температурном диапазоне применять PPTC следует с осторожностью. Если вы считаете, что проблемы у нашего кандидата на звание Идеального Предохранителя закончились, то заблуждаетесь. Есть у него ещё одна слабость, присущая людям. После стрессового состояния, вызванного чрезмерным перегревом, ему необходимо придти в норму. Однако физика горячего тела очень похожа на физику мягкого. Как и человек после инсульта, прежним наш предохранитель уже не станет никогда! Для убедительности приведу очередной график, процесса реабилитации после стресса, вызванного превышением протекающего тока, который, меткие на слово англичане, обозвали Trip Event. и как они не боятся нашего роспотребнадзора?

Из графика видно, что процесс восстановления может длиться сутками, но полным не бывает никогда. С каждым случаем срабатывания защиты нормальное сопротивление нашего прибора становится всё выше и выше. После нескольких десятков циклов прибор вообще теряет способность выполнять возложенные на него функции должным образом. Поэтому не стоит использовать их в случаях когда перегрузки возможны с высокой периодичностью.
Пожалуй на этом стоило бы и закончить, и наконец приступить к обсуждению областей применения и схемотехнических решений, но стоит обсудить ещё некоторое нюансы, для чего посмотрим на основные характеристики широко распространённых серий нашего героя дня.

При выборе элемента, который вы будете использовать в проекте обратите внимание на максимально допустимый рабочий ток. Если высока вероятность его превышения, то стоит обратиться к альтернативному виду защиты, либо ограничить его с помощью другого прибора. Ну например проволочного резистора.
Ещё один очень важный параметр - максимальное рабочее напряжение. Понятно, что когда прибор находится в нормальном режиме напряжение на его контактах очень мало, но вот после перехода в режим защиты оно может резко возрасти. В недалёком прошлом этот параметр был очень мал и ограничивался десятками вольт, что не давало возможности использовать такие предохранители в высоковольтных цепях, скажем для защиты сетевых блоков питания.
В последнее время ситуация улучшилась и появились серии, рассчитанные на достаточно высокое напряжение, но обратите внимание, что они имеют весьма небольшие рабочие токи.

Скрестим ужа и трепетную лань.

Судя по тому, какое разнообразие устройств PolySwitch предлагает рынок, использовать их в разрабатываемых вами устройствах можно, а в отдельных случаях даже нужно, но к выбору конкретного прибора и способа его использования следует подходить с большой тщательностью.
Кстати, что касается схемотехники, прямая замена плавких предохранителей на PolySwitch хорошо проходит только в простейших случаях.
Например: для встраивания в батарейные отсеки, или для защиты оборудования (электродвигатели, активаторы, монтажные блоки) и электропроводки в автомобильных приложениях. Т.е. устройств, которые не выходят из строя мгновенно при перегрузке. Специально для этого имеется широкий класс исполнения данных устройств в виде перемычек с аксиальными выводами и даже дисков для аккумуляторов.

В большинстве же случаев PolySwitch стоит комбинировать с более быстродействующими устройствами защиты. Такой подход позволяет компенсировать многие из их недостатков, и в результате их с успехом применяют для защиты периферийных устройств компьютеров. В телекоммуникации, для защиты АТС, кроссов, сетевого оборудования от всплесков тока, вызванных попаданием линейного напряжения и молниями. А так же при работе с трансформаторами, сигнализациями, громкоговорителями, контрольно-измерительным оборудованием, спутниковым телевидением и во многих других случаях.

Вот простенький пример защиты USB порта.

В качестве комплексного подхода рассмотрим гипотетическую схему комплексно решающую задачу построения сверхзащищённого светодиодного драйвера с питанием от сети переменного напряжения 220В.

В первой ступени самовосстанавливающийся предохранитель применён в связке с проволочным резистором и варистором. Варистор защищает от резких бросков напряжения, а резистор ограничивает протекающий в цепи ток. Без этого резистора в момент включения импульсного источника питания в сеть через предохранитель может течь недопустимо большой импульс тока, обусловленный зарядом входных ёмкостей. Вторая ступень защиты предохраняет от неправильного переключения полярности, или ошибочном подключении источника питания со слишком большим напряжением. При этом, в момент аварийной ситуации, бросок тока принимает на себя защитный TVS диод, а PolySwitch ограничивает протекающую через него мощность, предотвращая тепловой пробой. Кстати, эта связка настолько напрашивается в ходе разработки схемотехники и так широко распространена, что породила отдельный класс приборов - PolyZen. Весьма удачный гибрид ужа и трепетной лани.

Ну, и на выходе наш самовосстанавливающийся предохранитель служит для предотвращения короткого замыкания, а так же на случай выхода из рабочего режима светодиодов, или их драйвера в результате перегрева, либо неисправности.
В схеме также присутствуют элементы защиты от статики, но это уже не тема данной статьи…

Предупреждён - значит вооружён.

На прощание давайте кратко подведём итоги:
  • Polyswitch это не плавкий предохранитель.
  • Применяя Polyswitch необходимо заботиться о том, чтобы ток который через него проходит даже в случае внештатной ситуации не превышал допустимый. Необходимо применение ограничителей тока. В отдельных случаях ограничителем могут служить такие элементы как соединительные провода (электропроводка автомобиля) или внутреннее сопротивление батарей/аккумуляторов. В таких случаях возможна простейшая схема включения в разрыва цепи.
  • Polyswitch весьма инерционный прибор, он не годится для защиты схем чувствительных к коротким броскам тока. В этих случаях его необходимо применять совместно с другими элементами защиты - стабилитронами, супрессорами, варисторами, разрядниками и т. п., что не освобождает вас от необходимости принятия мер, ограничивающих максимальный ток в цепи.
  • Применяя Polyswitch следует следить чтобы напряжение на нём не превышало допустимого. Высокое напряжение может появиться после срабатывания прибора, когда его сопротивление увеличивается.
  • Следует помнить, что количество срабатываний прибора ограниченно. После каждого срабатывания его характеристики ухудшаются. Он не подходит для защиты цепей в которых перегрузки являются обыденным делом.
  • Ну и наконец, не забывайте что ток срабатывания этого прибора существенным образом зависит от температуры окружающей среды. Чем она выше, тем он меньше. Если ваше устройство рассчитано на эксплуатацию в расширенном температурном диапазоне или периодически работает в зоне повышенных температур (мощный блок питания или усилитель НЧ), это может привести к ложным срабатыванием.

P.S

Специально для того, чтобы в очередной раз не оскорблять чувства пользователя

В комментариях к моей прошлой статье меня неоднократно корили за то, что не упомянул способ защиты с использованием самовосстанавливающегося предохранителя. Чтобы исправить эту несправедливость поначалу хотел просто добавить в статью дополнительную схему защиты и короткое к ней пояснение. Однако решил, что тема самовосстанавливающихся предохранителей заслуживает отдельной публикации. Дело в том, что устоявшееся их название не слишком отражает суть вещей, а копаться в даташитах и разбираться в принципе работы при применении таких “элементарных” компонентов, как предохранитель, часто начинают уже после того, как начала глючить первая партия плат. Хорошо если не серийная. Итак, под катом вас ждёт попытка разобраться, что же это за зверь такой PolySwitch , оригинальное название, кстати, лучше отражает суть прибора, и понять с чем его едят, как и в каких случаях имеет смысл его использовать.

Физика тёплого тела.

PolySwitch , это PPTC (Polymeric Positive Temperature Coefficient) прибор, который имеет положительный температурный коэффициент сопротивления. По правде, гораздо больше общих черт он имеет с позистором, или биметаллическим термопредохранителем, чем с плавким, с которым его обычно ассоциируют не в последнюю очередь благодаря усилиям маркетологов.
Вся хитрость заключается в материале из которого наш предохранитель изготовлен - он представляет собой матрицу из не проводящего ток полимера, смешанного с техническим углеродом. В холодном состоянии полимер кристаллизован, а пространство между кристаллами заполнено частицами углерода, образующими множество проводящих цепочек.


Если через предохранитель начинает протекать слишком большой ток, он начинает нагреваться, и в какой-то момент времени полимер переходит в аморфное состояние, увеличиваясь в размерах. Из-за этого увеличения углеродные цепочки начинают разрываться, что вызывает рост сопротивления, и предохранитель нагревается еще быстрее. В конце-концов сопротивление предохранителя увеличивается настолько, что он начинает заметно ограничивать протекающий ток, защищая таким образом внешнюю цепь. После остывания прибора происходит процесс кристаллизации и предохранитель снова становится превосходным проводником.
Как выглядит температурная зависимость сопротивления видно из следующего рисунка


На кривой отмечено несколько характерных для работы прибора точек. Наш предохранитель является отличным проводником пока температура находится в рабочем диапазоне Point1 < T

Идеальный сферический конь в вакууме.

Пора переходить от теории к практике. Соберём простую схему защиты нашего ценного устройства, настолько простую, что изображённая по ГОСТу она выглядела бы просто неприлично.


Что же будет происходить, если в цепи вдруг возникнет недопустимый ток, превышающий ток срабатывания? Сопротивление материала из которого прибор изготовлен начнёт возрастать. Это приведёт к увеличению падения напряжения на нём, а значит и рассеиваемой мощности равной U*I. В результате температура растёт, это снова приводит к… В общем начинается лавинообразный процесс нагрева прибора с одновременным увеличением сопротивления. В результате проводимость прибора падает на порядки и это приводит к желаемому уменьшению тока в цепи.
После того как прибор остывает его сопротивление восстанавливается. Через некоторое время, в отличие от предохранителя с плавкой вставкой, наш Идеальный Предохранитель снова готов к работе!
Идеальный ли? Давайте вооружившись нашими скромными познаниями в физике прибора попробуем разобраться в этом.

Гладко было на бумаге, да забыли про овраги.

Пожалуй, главная проблема заключается во времени. Время вообще такая субстанция, которую очень трудно победить, хотя многим очень хотелось… Но не будем о политике - ближе к нашим полимерам. Как вы наверное уже догадались, я веду к тому, что изменение кристаллической структуры вещества гораздо более длительный процесс чем перестройка дырок с электронами, например в туннельном диоде. Кроме этого, для того чтобы разогреть прибор до нужной температуры, требуется некоторое время. В результате, когда ток через предохранитель вдруг превысит пороговое значение, его ограничение происходит совсем не мгновенно. При токах, близких к пороговому, этот процесс может занять несколько секунд, при токах близких к максимально допустимому для прибора, доли секунды. В результате за время срабатывания такой защиты сложное электронное устройство успеет выйти из строя, возможно, не один десяток раз. В подтверждение привожу типичный график зависимости времени срабатывания (по вертикали) от вызвавшего это срабатывание тока (по горизонтали) для гипотетического PTVC прибора.


Обратите внимание, что на графике приведены для сравнения две зависимости, снятые при разных температурах окружающей среды. Надеюсь вы ещё помните, что первопричиной перестройки кристаллической структуры служит температура материала, а не протекающий через него ток. Это значит, что при прочих равных, для того чтобы разогреть прибор до состояния метаморфозы от более низкой температуры необходимо затратить больше энергии чем от более высокой, а значит, и процесс этот в первом случае займёт больше времени. Как следствие, получаем зависимость таких важнейших параметров прибора, как максимальный гарантированный ток нормальной работы и гарантированный ток срабатывания от температуры окружающей среды.

Прежде чем привести график уместно упомянуть об о основных технических характеристиках данного класса приборов.

  • Максимальное рабочее напряжение Vmax - это максимально допустимое напряжение, которое может выдерживать прибор без разрушения при номинальном токе.
  • Максимально допустимый ток Imax - это максимальный ток, который прибор может выдержать без разрушения.
  • Номинальный рабочий ток Ihold - это максимальный ток, который прибор может проводить без срабатывания, т.е. без размыкания цепи нагрузки.
  • Минимальный ток срабатывания Itrip - это минимальный ток через прибор, приводящий к переходу из проводящего состояния в непроводящее, т.е. к срабатыванию.
  • Первоначальное сопротивление Rmin, Rmax - это сопротивление прибора до первого срабатывания (при получении от изготовителя).


В нижней части графика находится рабочая область прибора. Что произойдёт в средней части зависит, судя по всему, от взаимного расположения звёзд на небе, ну а побывав в верхней части графика прибор отправится в путешествие (trip), которое вызовет метаморфозы его кристаллической структуры и как следствие срабатывание защиты.
Таким образом, в устройствах предназначенных для работы в широком температурном диапазоне применять PPTC следует с осторожностью. Если вы считаете, что проблемы у нашего кандидата на звание Идеального Предохранителя закончились, то заблуждаетесь. Есть у него ещё одна слабость, присущая людям. После стрессового состояния, вызванного чрезмерным перегревом, ему необходимо придти в норму. Однако физика горячего тела очень похожа на физику мягкого. Как и человек после инсульта, прежним наш предохранитель уже не станет никогда! Для убедительности приведу очередной график, процесса реабилитации после стресса, вызванного превышением протекающего тока, который, меткие на слово англичане, обозвали Trip Event. и как они не боятся нашего роспотребнадзора?


Из графика видно, что процесс восстановления может длиться сутками, но полным не бывает никогда. С каждым случаем срабатывания защиты нормальное сопротивление нашего прибора становится всё выше и выше. После нескольких десятков циклов прибор вообще теряет способность выполнять возложенные на него функции должным образом. Поэтому не стоит использовать их в случаях когда перегрузки возможны с высокой периодичностью.
Пожалуй на этом стоило бы и закончить, и наконец приступить к обсуждению областей применения и схемотехнических решений, но стоит обсудить ещё некоторое нюансы, для чего посмотрим на основные характеристики широко распространённых серий нашего героя дня.


При выборе элемента, который вы будете использовать в проекте обратите внимание на максимально допустимый рабочий ток. Если высока вероятность его превышения, то стоит обратиться к альтернативному виду защиты, либо ограничить его с помощью другого прибора. Ну например проволочного резистора.
Ещё один очень важный параметр - максимальное рабочее напряжение. Понятно, что когда прибор находится в нормальном режиме напряжение на его контактах очень мало, но вот после перехода в режим защиты оно может резко возрасти. В недалёком будущем этот параметр был очень мал и ограничивался десятками вольт, что не давало возможности использовать такие предохранители в высоковольтных цепях, скажем для защиты сетевых блоков питания.
В последнее время ситуация улучшилась и появились серии, рассчитанные на достаточно высокое напряжение, но обратите внимание, что они имеют весьма небольшие рабочие токи.


Скрестим ужа и трепетную лань.

Судя по тому, какое разнообразие устройств PolySwitch предлагает рынок, использовать их в разрабатываемых вами устройствах можно, а в отдельных случаях даже нужно, но к выбору конкретного прибора и способа его использования следует подходить с большой тщательностью.
Кстати, что касается схемотехники, прямая замена плавких предохранителей на PolySwitch хорошо проходит только в простейших случаях. Например: для встраивания в батарейные отсеки, или для защиты оборудования (электродвигатели, активаторы, монтажные блоки) и электропроводки в автомобильных приложениях. Т.е. устройств, которые не выходят из строя мгновенно при перегрузке. Специально для этого имеется широкий класс исполнения данных устройств в виде перемычек с аксиальными выводами и даже дисков для аккумуляторов.

В большинстве же случаев PolySwitch стоит комбинировать с более быстродействующими устройствами защиты. Такой подход позволяет компенсировать многие из их недостатков, и в результате их с успехом применяют для защиты периферийных устройств компьютеров. В телекоммуникации, для защиты АТС, кроссов, сетевого оборудования от всплесков тока, вызванных попаданием линейного напряжения и молниями. А так же при работе с трансформаторами, сигнализациями, громкоговорителями, контрольно-измерительным оборудованием, спутниковым телевидением и во многих других случаях.

Для примера рассмотрим гипотетическую схему комплексно решающую задачу построения сверхзащищённого светодиодного драйвера с питанием от сети переменного напряжения 220В.


В первой ступени самовосстанавливающийся предохранитель применён в связке с проволочным резистором и варистором. Варистор защищает от резких бросков напряжения, а резистор ограничивает протекающий в цепи ток. Без этого резистора в момент включения импульсного источника питания в сеть через предохранитель может течь недопустимо большой импульс тока, обусловленный зарядом входных ёмкостей. Вторая ступень защиты предохраняет от неправильного переключения полярности, или ошибочном подключении источника питания со слишком большим напряжением. При этом, в момент аварийной ситуации, бросок тока принимает на себя защитный TVS диод, а PolySwitch ограничивает протекающую через него мощность, предотвращая тепловой пробой. Кстати, эта связка настолько напрашивается в ходе разработки схемотехники и так широко распространена, что породила отдельный класс приборов - PolyZen. Весьма удачный гибрид ужа и трепетной лани.

Ну, и на выходе наш самовосстанавливающийся предохранитель служит для предотвращения короткого замыкания, а так же на случай выхода из рабочего режима светодиодов, или их драйвера в результате перегрева, либо неисправности.
В схеме также присутствуют элементы защиты от статики, но это уже не тема данной статьи…

P.S

Специально для того, чтобы в очередной раз не оскорблять чувства пользователя kacang хочу отметить, что при подготовке статьи были использованы материалы из следующих источников:
ru.wikipedia.org
www.platan.ru/
www.te.com/
www.led-e.ru/
а также отрывки знаний из моей головы, почерпнутые в ходе реализации различных проектов по разработке радиоэлектронных устройств , обучения в МИЭТе и привычки, привитой со школьной скамьи, во всём искать физический смысл.

Самовосстанавливающийся предохранитель иными словами можно назвать предохранителем многоразового использования . Предохранитель являет собой полимерный резистор, имеющий положительный температурный коэффициент сопротивления. Используется для защиты от перегрузки цепей по току или одновременной защиты по напряжению и току в пределах от 3А до 100А и от 6В до 250В .

Самовосстанавливающиеся предохранители отличаются от традиционных конструкций отсутствием плавкой вставки и возможностью самовосстановления проводящих способностей после срабатывания и завершения воздействия побудителя.

Способность автоматического восстановления предохранителей сокращает время и расходы на обслуживание, ремонт электроустановки.

Возрастание проходящего тока или температуры окружающей среды, превышающих номинальные значения, приводят к увеличению сопротивления предохранителя в пределах от 0,0026Ом до 60Ом , плавлению кристаллических токопроводящих частиц и размыканию цепи впоследствии. Скорость срабатывания зависит от конкретной серии и длится в пределах от 0,15 с до 40,00 с .

После сброса цепи температура предохранителя понижается, восстанавливая первоначальные характеристики. Происходит самовосстановление. Следует отметить, что число срабатываний ограниченно . После каждого срабатывания характеристики ухудшаются.

Выбор соответствующего предохранителя необходимо осуществлять, обращая внимание на следующие характеристики: тип предохранителя (с радиальными, аксиальными выводами или для поверхностного монтажа в SMD исполнении), максимальный не приводящий к срабатыванию ток (рекомендуется выбирать со значением, превышающим ток цепи), максимальное рабочее напряжение и температура рабочей среды, влияющая на ток срабатывания.

Применяются представленные предохранители в компьютерном, телекоммуникационном и кроссовом оборудовании, медицинской измерительной аппаратуре, аккумуляторных батареях, автомобильном и другом электрооборудовании.

Детальные характеристики и основные параметры самовосстанавливающихся предохранителей значатся в таблицах. Расшифровка маркировки, зависимость тока, не приводящего к срабатыванию, от температуры окружающей среды, размеры, рекомендации монтажа и пайки приведены ниже.

Гарантия работы поставляемых нашим предприятием самовосстанавливающихся предохранителей составляет 2 года. Это подкрепляется надлежащими документами по качеству.

Окончательная цена на самовосстанавливающийся предохранитель зависит от количества, сроков поставки, производителя, страны происхождения и формы оплаты.

Самовосстанавливающиеся предохранители являются миниатюрной альтернативой традиционным громоздким предохранителям. Они обеспечивают безупречную защиту компьютерной и портативной техники, батарейных устройств, автомобильной электроники. Широкий выбор этих изделий предлагает компания Bourns.

Наиболее распространенной и стандартной защитой электронных устройств от возникновения аварийных ситуаций является применение предохранителей. По принципу действия они делятся на четыре группы: плавкие, самовосстанавливающиеся, электронные и электромеханические . Вместо традиционных плавких вставок с каждым годом все шире используются миниатюрные самовосстанавливающиеся предохранители. Эти устройства по аналогии с обычными предохранителями подключаются последовательно с нагрузкой (рисунок 1), но их эксплуатация имеет ряд особенностей.

Самовосстанавливающиеся предохранители – это устройства, ограничивающие ток в цепи, но в отличие от обычных плавких вставок, не утрачивающие работоспособность после срабатывания. Как правило, под самовосстанавливающимися предохранителями подразумеваются PPTC-термисторы.

PPTC (Polymeric positive temperature coefficient device) – полимерные устройства с положительным температурным коэффициентом сопротивления. Впервые такие устройства были открыты, описаны и запатентованы компанией Bell Labs в 1939 году (патент номер US#2,258,958) .

Принцип работы PPTC-предохранителя основан на способности полимера изменять проводящую структуру при нагревании). На рисунке 2 показана идеализированная кривая зависимости логарифма сопротивления от температуры предохранителя. При комнатной температуре полимер имеет кристаллическую структуру, так что движение заряженных частиц происходит упорядоченно, и ток в цепи определяется рабочим значением сопротивления нагрузки RL (рисунок 1). В случае возникновения аварийной ситуации ток в цепи резко увеличивается, нагревая полимер. При определенной температуре происходит срабатывание предохранителя, а именно – меняется фазовое состояние полимера из кристаллического в аморфное (рисунок 3). В результате сопротивление термистора резко возрастает, и ток в цепи теперь определяется значением сопротивления RMF.

Области применения

PPTC-предохранители прекрасно зарекомендовали себя как непременные элементы защиты в необслуживаемых устройствах с возможностью возникновения многократных перегрузок по току и устройствах, где замена плавкой вставки является проблематичной. Особенно актуальна защита с применением PPTC-предохранителей в разъемах электроники, где цепи питания могут замкнуться из-за внешнего воздействия и привести к перегрузке по току. Иными словами, сфера применения таких предохранителей включает в себя компьютеры и мобильные устройства (телефоны, планшеты, плееры), трансформаторы, звуковоспроизводящую технику, электромоторы, элементы питания, медицинское и измерительное оборудование, автомобильную электронику и телекоммуникационные сети.

Существует множество стандартов, в которых регламентируется необходимость защиты от токовых перегрузок. Например, стандарты PC 97, PC 98, PC 99 и PC 2001, которые разработаны совместно Microsoft и Intel для IBM-совместимых компьютеров; USB OTG (разработан USB Implementers Forum, Inc.); Telcordia GR-1089-CORE для защиты интерфейса абонентской линии или EN60742 для защиты трансформатора. Требования перечисленных стандартов можно успешно выполнить, используя PPTC-предохранители серий MULTIFUSE® производства Bourns.

Технические характеристики

Так как самовосстанавливающиеся предохранители имеют ярко выраженный положительный температурный коэффициент сопротивления, их характеристики зависят от температуры окружающей среды. Для срабатывания PPTC-предохранитель должен нагреться, поэтому переключение происходит не мгновенно, а в течение некоторого времени, которое зависит не только от температуры окружающей среды, но и от протекающего через предохранитель тока перегрузки. Предохранитель остается в «горячем» состоянии, обеспечивая постоянную защиту до тех пор, пока находится под напряжением или пока не будут устранены причины его срабатывания. После устранения причин выключения предохранитель охлаждается и его сопротивление со временем возвращается к номинальному значению.

С учетом вышесказанного для самовосстанавливающихся предохранителей можно выделить основные характеристики.

Ток пропускания , Ihold at 23°C, – это номинальный рабочий ток, то есть максимальный установившийся ток при температуре 23°C, не приводящий к срабатыванию предохранителя, а именно – к переходу из проводящего состояния в разрывное.

Ток срабатывания , Itrip at 23°C, – минимальный ток, приводящий к обязательному срабатыванию предохранителя при температуре 23°C.

Максимально допустимый ток срабатывания , Imax, – ток, который может быть прерван предохранителем при возникновении перегрузки без опасности разрушения самого защитного элемента.

Максимальное рабочее напряжение , Vmax, – это максимально допустимое напряжение, не приводящее к разрушению предохранителя при номинальном токе пропускания.

Время срабатывания , Time to Trip или ttrip at 23°C, – период времени после возникновения перегрузки (дополнительно указывается ток срабатывания Itrip, при котором происходило измерение времени, в течение которого падение напряжения на предохранителе станет больше 80% от величины напряжения питания защищаемой цепи, то есть сопротивление элемента станет значительно выше.

Мощность рассеяния , Tripped Power Dissipation или РD at 23°C, – мощность, рассеиваемая корпусом предохранителя при температуре 23°C.

Первоначальное сопротивление , Initial Resistance Rmin или Rmax at 23°C, – сопротивление предохранителя при указанных условиях перед его подключением в схему.

Сопротивление через час после срабатывания , One Hour Post-Trip Resistance или R1max at 23°CC - максимальное сопротивление предохранителя при температуре 23°C через 1 час после его срабатывания или пайки оплавлением.

В последние годы самовосстанавливающиеся предохранители стали чрезвычайно популярными изделиями, и все ведущие производители компонентов защиты цепей, среди которых TE Connectivity (Raychem), LittleFuse и, конечно же, Bourns, имеют их в своем портфеле. PPTC-предохранители производства компании Bourns семейства Multifuse® (рисунок 4) уже довольно широко известны на российском рынке, но разнообразие серий и исполнений вызывает некоторое замешательство у тех, кто только планирует использовать их в своих изделиях. Мы постараемся рассмотреть самые перспективные и применяемые серии этих предохранителей.

Технические параметры Multifuse® для планарного и выводного монтажа представлены в сводных таблицах 1 и 2.

Таблица 1. Сравнение и области применения контактных и бесконтактных энкодеров

Наименование Ihold, А Itrip, А Vmax, В Диапазон рабочих
температур, °C
1,2…4,2 2,7…7,6 15…30 -40…85
1,9…9 3,9…16,7 15…20 -40…85
1,8…3,4 3,8…6,8 15…24 -40…85
1,85…3 3,7…5,2 6…33 -40…85
0,55…2 1,2…4 10…60 -40…85
0,1…2,6 0,3…5,2 6…60 -40…85
0,05…1,75 0,15…3,5 6…30 -40…85
1,75…3,8 3,5…8 6 -40…85
0,12…2 2,29…4 6…30 -40…85
1,5…4 3…8 6 -40…85
0,1…1,1 0,3…2,2 6…15 -40…85
0,1 0,6 16 -40…125
0,1…0,5 0,3…1 6…15 -40…85
0,3…3 0,6…6 6…30 -40…85
1,36…1,6 2,72…3,2 16 -40…125
0,13 0,26 60 -40…85
0,13 0,26 60 -40…85
0,13 0,26 60 -40…85

Таблица 2. Характеристики выводных предохранителей Multifuse®

Наименование Ihold, А Itrip, А Vmax, В Диапазон рабочих
температур, °C
0,05…11 0,1…22 16…60 -40…85
0,7…13 1,4…24 16 -40…125
0,05…0,55 0,12…1,25 240 (AC) -20…85
0,2…3,75 0,4…7,5 72 -40…85
0,55…0,75 1,1…1,5 90 -40…85
0,12…0,18 0,24…0,36 250 (AC) -40…85
0,15…0,16 0,3…0,32 600 (AC) -40…85

Расшифровка наименования PPTC-предохранителей серии Multifuse

Наименования моделей предохранителей имеют удобную и понятную структуру, позволяющую легко расшифровать основные рабочие параметры. В общем случае название имеет вид MF – UUUU ZZZ/YY X – V.

  • MF – сокращение от названия серии Multifuse;
  • UUUU – серия предохранителя:
    • MSMF, NSMF, PSMF, USMF, SM – планарные;
    • R, RG, RM – радиальные выводные;
    • S, SVS, VS, VSN – аксиальные выводные.

Названия серий, оканчивающиеся на буквы HT, обозначают расширенный рабочий температурный диапазон. Например, для серии SMHT температура работы находится в диапазоне -40…125°C, а для серии SM – -40…85°C.

  • ZZZ – ток пропускания через предохранитель (Ihold). Например, значение 030 соответствуют току 0,3 А, а число 300 – 3 А;
  • YY – максимальное напряжение (Vmax). Если на месте «YY» стоит пропуск, то следует принимать стандартное напряжение для данной серии, а его значение необходимо уточнить в соответствующем описании;
  • X – отметка о применении при изготовлении технологии FreeXpansion Design™, которая значительно увеличивает стабильность параметров полимера с положительным температурным коэффициентом при многократных срабатываниях;
  • V – требование к упаковке:
    • V = 0 – элементы без упаковки;
    • V =2 – предохранители поставляются в лентах, накрученных на катушки (этот вариант целесообразен для линии автоматического монтажа).

Например, модель MF-MSMF 250/16 X-2 подразумевает, что используется PPTC-предохранитель типа Multifuze производства Bourns планарной серии MSMF с током пропускания 2,5 А при 23°C и максимальным напряжением 16 В. Буква «Х» обозначает, что при изготовлении применялась технология FreeXpansion Design™. Цифра «2» обозначает упаковку в катушках по 1500 штук в каждой.

Алгоритм подбора PPTC-предохранителя

При выборе самовосстанавливающегося PPTC-предохранителя необходимо определить следующие параметры:

  1. номинальный ток пропускания через предохранитель (Ihold);
  2. максимальное напряжение, которое может быть приложено к PPTC-предохранителю (Vmax);
  3. максимальный аварийный ток (Imax);
  4. максимальная рабочая температура вашего устройства;
  5. форм-фактор корпуса предохранителя.

Обратим внимание, что при выборе предохранителя критически важно учитывать зависимость тока пропускания Ihold от окружающей температуры. Для каждой серии предохранителей существуют таблицы поправочных коэффициентов, позволяющие избежать случайных срабатываний (таблица 3).

Таблица 3. Зависимость тока пропускания Ihold от температуры окружающей среды для серии MF-MSMF

Наименование Ihold, А
Температура окружающей среды, °C
-40 -20 0 23 40 50 60 70 85
0,16 0,14 0,12 0,1 0,08 0,07 0,06 0,05 0,03
0,23 0,19 0,17 0,14 0,12 0,1 0,09 0,08 0,06
0,29 0,26 0,23 0,2 0,17 0,15 0,14 0,12 0,1
0,29 0,26 0,23 0,2 0,17 0,15 0,14 0,12 0,1
0,44 0,39 0,35 0,3 0,26 0,23 0,21 0,18 0,15
0,77 0,68 0,59 0,5 0,44 0,4 0,37 0,33 0,29
1,15 1,01 0,88 0,75 0,65 0,6 0,55 0,49 0,43
1,15 1,01 0,88 0,75 0,65 0,6 0,55 0,49 0,43
1,59 1,43 1,26 1,1 0,95 0,87 0,8 0,71 0,6
1,59 1,43 1,26 1,1 0,95 0,87 0,8 0,71 0,6
2 1,7 1,4 1,1 0,95 0,88 0,8 0,73 0,61
1,8 1,63 1,43 1,25 1,08 0,99 0,91 0,81 0,68
2,17 1,95 1,72 1,5 1,3 1,18 1,09 0,97 0,82
2,1 1,9 1,7 1,5 1,25 1,13 1 0,88 0,69
2,3 2,2 1,9 1,6 1,45 1,3 1,15 1,03 0,91
3,08 2,71 2,35 2 1,8 1,6 1,5 1,4 1,25
3,9 3,42 2,96 2,5 2,24 1,98 1,85 1,29 0,94

Примеры использования

Рассмотрим задачу создания защиты электронных устройств от возникновения аварийных ситуаций при питании портативного устройства от USB 2.0. Ток потребления от шины питания USB не должен превышать 500 мА . Допустим, что эксплуатация устройства происходит при экстремальной температуре 70°C. Напряжение питания USB лежит в диапазоне 4,4…5,25 В. Обратившись к документации, выберем модели с подходящим максимальным рабочим напряжением (в данном случае – 6 В). В перечень таких моделей попадут MF-MSMF110, MF-MSMF125, MF-MSMF150 и другие. Теперь проверим, подойдут ли они по току удержания (Ihold), с учетом поправки на высокую температуру окружающей среды. Обратившись к таблице 3, мы видим, что для нашей задачи и по этому параметру подходит любой из перечисленных предохранителей, время срабатывания, однако, будет несколько отличаться. Стоит заметить, что протекание тока 0,5 А через Multifuse не вызывает нагрева самого устройства, так как выделяющаяся мощность и падение напряжения пренебрежимо малы. Типовая схема организации защиты USB-порта изображена на рисунке 5.

Для защиты от электростатических разрядов рекомендуется ставить варисторы CG0603MLC-05E семейства Chip Guard или двунаправленные TVS-диоды (супрессоры) CDSOD323-T05C. В соответствии со стандартом техники безопасности UL60950 порт должен выдержать короткое замыкание в течении 60 секунд без возгорания.

Другой пример – светодиодное освещение. Драйвер, он же источник питания, со стабилизацией выходного тока должен быть рассчитан на область безопасной работы светодиодной нагрузки. Наиболее часто такие устройства выполняют с помощью высокочастотного ШИМ-контроллера с обратной связью по току, протекающему через светодиоды. Хорошо известно, что светодиоды очень чувствительны к перегреву. Для нормального времени жизни и надежной работы температура p-n-перехода не должна превышать 85°С. Компания Bourns рекомендует применять устройства с положительным температурным коэффициентом сопротивления совместно со светодиодами для защиты последних от перегрева.

На рисунке 6 изображена комплексная защита светодиодного светильника совместно с ключевым источником питания . Основываясь на конкретных требованиях проекта, параметры представленных компонентов нужно корректировать. Для температурной и токовой защиты предлагается использовать миниатюрную серию MF-MSMF. Например, Multifuse MF-MSMF075 (Ihold = 0,75 А, Vmax = 13,2 В) переходит из проводящего состояния с низким сопротивлением в состояние с высоким сопротивлением за 0,2 секунды при аварийном токе Itrip = 8 А и температуре предохранителя, равной 23°C.

Помимо самовосстанавливающегося предохранителя, компания Bourns® предлагает использовать в светодиодных устройствах высокоточные резисторы с низким температурным коэффициентом (75 PPM) и мощностью рассеивания до 3 Вт в качестве датчика тока (например, серия CRA2512) в стандартном корпусе 2512, компактные индуктивности (серия SRU1048) для планарного монтажа с высотой менее 4,8 мм при токах до 7,8 А, а также диоды Шоттки (серия CD1005-B0520) с обратным напряжением до 30 В.

Чтобы устройство соответствовало стандартам IEC6100-4-5 Surge (защита от скачков напряжения), IEC6100-4-4 EFT (устойчивость к быстрым переходным процессам), IEC6100-4-2 Level 4 ESD (устойчивость к электромагнитным воздействиям), рекомендуется применять супрессоры (TVS-диоды) серии SMAJ c напряжением 5…179 В и рассеиваемой мощностью до 400 Вт.

Стоит уделить особое внимание самовосстанавливающимся предохранителям серии MF-RM. Специально разработанные для однофазной сети переменного тока c номинальным напряжением 220 В самовосстанавливающиеся предохранители Multifuse производства Bourns позволяют отказаться от применения дорогостоящих входных автоматических выключателей или плавких вставок. Серия MF-RM отлично показала себя в роли токовой защиты и защиты от перегрева в таких областях применения, как счетчики электрической энергии, электрические вентиляторы, кофемашины и другая кухонная техника, а также во всевозможных адаптерах переменного тока . Время срабатывания самовосстанавливающихся предохранителей серии MF-RM существенно меньше, чем у автоматических выключателей и плавких вставок. На рисунке 7 показана схема организации защиты устройств, подключаемых к однофазной сети переменного тока. Совместно с предохранителем серии MF-RM рекомендуется использовать варистор серии MOV-10DxxxK для защиты нагрузки от возможных скачков напряжения в сети.

Cамовосстанавливающиеся предохранители обладают рядом интересных преимуществ:

  • Быстрое срабатывание. Компоненты PPTC имеют меньшую теплоемкость по сравнению с другими решениями, и нагреваются быстрее. В результате они быстрее срабатывают.
  • Меньший размер. Компоненты PPTC занимают меньше места на плате, их легче интегрировать в изделие.
  • Комбинированная защита от превышения тока или перегрева устройства. Удобство разработки заключается в том, что в одном корпусе PPTC-предохранителя совмещаются защиты и от превышения порогового тока, и от тепловой перегрузки, что позволяет сэкономить на себестоимости конечного продукта.
  • Стабильная защита. Компоненты PPTC гарантируют разрыв цепи на протяжении всего времени отказа системы.
  • Отсутствие необходимости в обслуживании. Работа схемы возобновится после устранения перегрузки по току и при остывании предохранителя, не требуя вмешательства обслуживающего персонала. Не нужно менять плавкую вставку или вручную включать автоматический выключатель!

Заключение

Проблема максимальной экономии пространства на плате остро ставит вопрос о минимизации габаритов компонентов защиты. Самовосстанавливающиеся предохранители прекрасно вписываются в эту концепцию, являясь миниатюрной альтернативой традиционным громоздким предохранителям, обеспечивая безупречную защиту компьютерной и портативной техники, батарейных устройств, автомобильной электроники. Иными словами, везде, где присутствует источник питания и нагрузка, целесообразно применение PPTC-предохранителя. Компания КОМПЭЛ, получившая статус официального дистрибьютора Bourns, предлагает широкую номенклатуру PPTC со склада и под заказ, а также техническую поддержку, бесплатные образцы и проектные поставки по специальным ценам.

Литература

  1. https://ru.wikipedia.org/wiki/Электрический_предохранитель
  2. https://en.wikipedia.org/wiki/Resettable_fuse
  3. http://www.usb.org/developers/presentations/pres0500/Hosler_USB_PM.ppt
  4. http://bretford.com/resources/downloads/brochures/UL%20White%20Paper.pdf
  5. https://www.bourns.com/data/global/pdfs/Bourns_CPK1173_LED_Lighting_AppNote.pdf
  6. https://www.bourns.com/data/global/pdfs/Bourns_CP_Smart_Meter_Power_Comm_White_Paper.pdf.

Читайте также: