Цифровой измеритель ёмкости. Цифровой измеритель ESR (ЭПС) и ёмкости на контроллере

Основными параметрами, характеризующими конденсаторы, являются их электрическая ёмкость и угол потерь.

Допустимая погрешность измерения ёмкостей конденсаторов зависит от области применения последних. Ёмкость конденсаторов, входящих в состав колебательных систем, должна определяться особенно тщательно, с погрешностью, по крайней мере, 1%. При выборе конденсаторов блокировочных, разделительных, связи и т. п. обычно допускается значительный (до 20-50%) разброс ёмкостей и измерение их можно производить простейшими методами.

Рис. 1. Эквивалентные схемы (а, б) и векторная диаграмма (в) цепи с конденсатором

В каждом конденсаторе, включённом в электрическую цепь, имеют место потери энергии, возникающие главным образом в материале диэлектрика, а также вследствие несовершенства изоляции между выводами. С учётом потерь эквивалентную схему конденсатора можно представить в двух вариантах: либо в виде ёмкости С, включённой последовательно с сопротивлением потерь R п (рис. 1, а), либо в виде той же ёмкости С, шунтированной сопротивлением утечки R у (рис. 1, б). При переходе от одной эквивалентной схемы к другой для пересчёта значения активного сопротивления пользуются формулой

R у = 1/((2*π*f*C) 2 * R п) ,

где f - частота тока в цепи конденсатора.

Из векторной диаграммы на рис. 1, в, справедливой для обоих вариантов эквивалентных схем, следует, что в цепи с конденсатором из-за наличия потерь фазовый сдвиг φ между током I и напряжением U всегда меньше 90°. Потери в конденсаторе обычно характеризуют углом потерь δ = 90° - &phi, определяемым в соответствии с обозначениями на рис. 1 из формулы

tg δ = U п /U с = Iу/Iс = 2*π*f*C*R п = 1/(2*π*f*C*R у).

Потери в конденсаторе иногда выражают коэффициентом мощности cos φ или током утечки Iу, определяемым при стандартных условиях. Для большинства конденсаторов потери очень малы (tg δ < 0,001), поэтому можно считать

tg δ ≈ δ ≈ sin δ = sin (90° - φ) = cos φ .

Наибольшие потери имеют место в электролитических и бумажных конденсаторах, применение которых в основном ограничивается областью низких частот.

При некоторых методах измерений потери в конденсаторе определяются одновременно с измерением его ёмкости. При этом следует иметь в виду, что с повышением частоты потери заметно возрастают (что соответствует увеличению значения R п и уменьшению R у), тогда как ёмкость С практически не зависит от частоты. На очень высоких частотах возможно заметное возрастание действующей (измеренной по приборам) ёмкости конденсаторов из-за влияния индуктивности обкладок и подводящих проводов.

Параметры конденсатора (С, R n , R y , δ) зависят от внешних условий его работы - температуры, влажности, атмосферного давления, а также от приложенного к нему напряжения. Поэтому в ответственных случаях испытание конденсаторов осуществляется не только на их рабочих частотах, но и в условиях, близких к эксплуатационным.

Простейшие проверки конденсаторов можно производить и без специальных измерительных приборов. С помощью омметра или пробника легко обнаружить короткое замыкание или пробой между обкладками конденсатора (следует лишь учитывать, что пробой иногда проявляется только при значительном напряжении на конденсаторе, близком к его рабочему напряжению). Проверка на обрыв неэлектролитических конденсаторов ёмкостью от 0,01 мкФ и выше проще всего производится включением конденсатора в цепь переменного тока, например осветительную или трансляционную, последовательно с какой-либо нагрузкой - лампой накаливания, громкоговорителем и т. п. Нормальное или несколько ослабленное свечение лампы или звучание радиопередачи будет свидетельствовать об отсутствии обрыва.

Конденсатор, сопротивление утечки которого велико, способен удерживать длительное время без заметного уменьшения полученный им заряд; это позволяет простыми средствами оценить качество конденсаторов ёмкостью более 0,01 мкФ. При подключении к такому конденсатору омметра стрелка измерителя последнего за счёт тока заряда несколько отклонится, а затем (при большом сопротивлении утечки) возвратится в исходное или близкое к нему положение. Последующие кратковременные подключения к конденсатору омметра, повторяемые с интервалом в несколько секунд, не должны вызывать отклонения стрелки измерителя. При малом сопротивлении утечки заметное отклонение стрелки будет наблюдаться при каждом подключении омметра. Для проверки на утечку конденсаторов ёмкостью более 100 пФ можно применить головные телефоны, соединённые последовательно с низковольтной батареей. При малом сопротивлении утечки каждое подключение индикатора к конденсатору вызывает щелчок в телефонах, тогда как при хорошем конденсаторе щелчок прослушивается лишь при первом подключении. Измерение значения сопротивления утечки (на постоянном токе) может производиться индукторными или электронными мегомметрами.

Электролитические конденсаторы следует подсоединять к испытательному прибору с учётом полярности включения источника питания. При измерении сопротивления утечки таких конденсаторов рекомендуется отсчёт производить через 10 мин после их включения под напряжение, когда процесс заряда можно считать завершившимся.

Для измерения параметров конденсаторов применяются методы вольтметра - амперметра, непосредственного измерения при помощи микрофарадметров, сравнения (замещения), мостовой и резонансный.

Напряжение, приложенное к конденсатору при любом его испытании, не должно превосходить допустимого рабочего напряжения. Если в процессе испытания конденсатор заряжается до значительного напряжения, необходимо производить его разряд по окончании испытания (например, с помощью кнопки, включённой параллельно конденсатору).

Измерение ёмкостей методом вольтметра - амперметра

Рис. 2. Схемы измерения ёмкостей методом вольтметра-амперметра

Схема измерений представлена в двух вариантах на рис. 2. Проверяемый конденсатор Сх включается в цепь переменного тока известной частоты F, и реостатом (или потенциометром) R устанавливают требуемое по условиям испытания либо удобное для отсчёта значение тока I или напряжения U. По показаниям приборов переменного тока V и можно рассчитать полное сопротивление конденсатора

Z = (R 2 +X 2) 0,5 =U/I , (1)

где R и X = 1/(2*π*F*C x) - соответственно его активная и реактивная составляющие.

Если потери малы, т. е. R << X, то измеряемая ёмкость определяется формулой

C x = I/(2*π*F*U). (2)

Схема на рис. 2, а, даёт достаточно точные результаты при измерении больших ёмкостей, сопротивление которых X значительно меньше входного сопротивления вольтметра V. Схема на рис. 2, б, применяется для измерения меньших ёмкостей, сопротивление которых в десятки и более раз превышает сопротивление миллиамперметра mA . Предположим, что требуется измерять ёмкости в пределах 0,1-1 мкФ на частоте 50 Гц при наличии миллиамперметра переменного тока на 3 мА. Так как сопротивление этих ёмкостей X = 3200...32000 Ом во много раз больше любого возможного сопротивления миллиамперметра, то измерение следует проводить по схеме на рис. 2, б, при напряжении питания U ≥ I*X = 0,003*3200 ≈ 10 В.

Схема на рис. 2, а может быть применена и для измерения ёмкостей электролитических конденсаторов. Если напряжение питания не превышает 1-2 В, то измерение допустимо проводить при установке переключателя В в положение 1. При больших переменных напряжениях возможно повреждение конденсаторов вследствие разложения электролита. Эта опасность устраняется, если переключатель В установить в положение 2. При этом последовательно с источником переменного тока частоты F включается источник постоянного тока, напряжение на зажимах которого U 0 должно превышать амплитуду переменного напряжения. Тогда в цепи будет действовать пульсирующее напряжение, безопасное для конденсатора при условии правильной полярности его включения в схему. Пульсирующее напряжение можно также получить при последовательном включении в измерительную схему диода. Во всех случаях вольтметр V и миллиамперметр mA должны измерять лишь переменные составляющие напряжения и тока, для чего они выполняются с закрытой схемой входа.

Микрофарадметры с последовательной и параллельной схемами измерения

Приборы, у которых оценка измеряемых ёмкостей производится непосредственно по шкале стрелочного измерителя, называются микрофарадметрами. Действие этих приборов может базироваться на использовании зависимости тока или напряжения в цепи, питаемой источником переменного тока, от значения измеряемой ёмкости включённого в неё конденсатора. Схемы таких приборов во многом аналогичны схемам омметров и мегомметров.

Микрофарадметры могут иметь последовательную или параллельную схему измерения. Последовательная схема (рис. 3) применяется для измерения ёмкостей средних значений (примерно от 100 пФ до 10 мкФ). Напряжение U частоты F подводится от источника к цепи, в которой последовательно включены конденсатор опорной ёмкости С о, испытуемый конденсатор С x и микро- (или милли) амперметр переменного тока mA . Перед началом измерений при коротком замыкании входных зажимов (что эквивалентно С x = ∞) реостатом R устанавливают в цепи микроамперметра mA ток полного отклонения I п; это обеспечивается при выборе ёмкости опорного конденсатора

C 0 ≥ I п (2*π*F*U). (3)

При подключении конденсатора С x ток через микроамперметр снизится до некоторого значения I x , тем меньшего, чем меньше ёмкость С x , что позволяет измеритель снабдить шкалой с отметками значений измеряемых ёмкостей. Градуировочная характеристика прибора не зависит от частоты и формы кривой напряжения питания и приближённо определяется формулой

I x /I п ≈ С х /(С о + С x), (4)

идентичной формуле, определяющей градуировочную характеристику параллельных схем омметров. Аналогично изменяется и погрешность измерений: наименьшая в середине шкалы, она возрастает к её краям. Середине шкалы соответствует ёмкость С x ≈ С о, а диапазон измерений ограничивается значениями 0,1 С о и 10 С о. Необходимое напряжение питания определяется из условия

U ≥ I п /(2*π*F*C о).

Например, при I п = 1 мА, F = 50 Гц и С о = 20000 пФ источник питания должен обеспечивать напряжение U ≥ 160 В, но если частота колебаний источника F = 1000 Гц, то потребное напряжение питания снижается до 8-10 В.

Для измерения ёмкостей в широком диапазоне микрофарадметр должен иметь несколько пределов измерений, которые целесообразно задавать средними значениями шкалы С о при переходном коэффициенте N, кратном 10.

Рис. 3. Последовательная схема микрофарадметра с измерителем тока

Наиболее удобным источником питания микрофарадметра является сеть переменного тока частотой 50 Гц, позволяющая с помощью малогабаритного трансформатора получить любое требуемое напряжение. Высокое значение последнего необходимо лишь на пределах с самыми малыми ёмкостями С о. Если ограничить максимальное напряжение питания значением 200 В, то при наличии выпрямительного микроамперметра mA на 100 мкА можно получить, согласно (3), ёмкость С о да 1600 пФ. Высоковольтное питание допустимо включать лишь после разряда конденсатора С о и присоединения к схеме испытуемого конденсатора. Для замыкания входных зажимов с целью установки стрелки измерителя на отметку «∞» желательно использовать кнопку. Конденсаторы С о и С x должны быть рассчитаны на рабочее напряжение, не меньшее испытательного. Для предотвращения повреждения измерителя в случае пробоя конденсатора С о, последний целесообразно составлять из двух последовательно включённых конденсаторов, каждый ёмкостью 2С о. Возможно также включение в цепь питания ограничительного резистора с сопротивлением, в 5-10 раз меньшим ёмкостного сопротивления конденсатора С о.

Для расширения диапазона измерений в сторону больших значений С о в начале обычно уменьшают в N раз напряжение питания (пока оно не достигнет единиц вольт), используя отводы от обмоток силового трансформатора или с помощью резистивного делителя напряжения. Переход к пределам с ещё большим значением С о может сопровождаться понижением чувствительности индикатора посредством его шунтирования, подобно тому, как это делается в многопредельных омметрах. Верхний предел измеряемых ёмкостей обычно не превосходит 1-10 мкФ, поскольку при сопротивлении конденсатора С о, сравнимым с внутренним сопротивлением индикатора и цепи питания, сильно возрастает погрешность измерений.

При расширении диапазона измерений в сторону малых значений С о для получения приемлемых значений напряжения питания U схему приходится питать от внутреннего или внешнего генератора - источника напряжения повышенной частоты F в тысячи герц. При этом необходимо принимать меры к устранению влияния собственных ёмкостей схемы и монтажа.

Схема микрофарадметра по рис. 3 будет действовать и при замене опорного конденсатора С о на опорный резистор R о. В этом случае выбранное среднее значение С о шкалы измерения ёмкостей будет достигаться при сопротивлении

R о ≈ (4*U 2 / I 2 п - 1/(2*π*F*C о) 2) 0,5

Такой прибор можно одновременно использовать и как омметр с последовательной схемой для приближённого измерения (на частоте F) активных сопротивлений при условии выполнения отсчёта по специальной шкале, сходной со шкалой ёмкостей, но обратного расположения.

Рис. 4. Последовательная схема многопредельного микрофарадметра с измерителем напряжения

При наличии электронного вольтметра переменного тока с большим входным сопротивлением R в за основу микрофарадметра может быть принята схема, приведённая на рис. 4. Переменное напряжение U, стабилизированное цепочкой R1, Д1, Д2 и равное примерно пределу измерения U п вольтметра V, при замыкании входных зажимов воздействует на вольтметр. Регулировкой чувствительности последнего добиваются отклонения стрелки его измерителя до конца шкалы. При включении в схему испытуемого конденсатора С x образуется делитель напряжения R о, С x , с которого к вольтметру подводится напряжение U x , тем меньшее, чем меньше ёмкость С x . Выбранное среднее значение С о шкалы ёмкостей будет достигаться при сопротивлении R о ≈ 1/(11*F*C о). Переключением резисторов R о различных номиналов осуществляется смена пределов измерений ёмкостей. Минимально возможное значение ёмкости С о ограничивается предельно допустимым значением сопротивления R о ≈ 0,1 R о. Например, при R о = 1 МОм и частоте F = 50 Гц получаем ёмкость С о ≈ 1/(11*F*R о) = 1820 пФ.

Микрофарадметр в рассматриваемом режиме его работы имеет крайние отметки шкалы ёмкостей «0» и «∞». Однако если использовать в приборе чувствительный милливольтметр с пределом измерения U п << U, допускающий кратковременную случайную перегрузку до напряжения, равного U, то верхние пределы измерения прибора могут быть ограничены выбранными значениями ёмкостей С п, которым должны соответствовать сопротивления

R о ≈ U п /(U*2*π*F*C п) ;

при этом значительно расширяется рабочий участок шкалы. В данном случае при допустимом сопротивлении R о = 1 МОм, частоте F = 50 Гц и отношении напряжений U п /U = 1/30 получаем С п ≈ 100 пФ, что позволяет производить измерение ёмкостей от 10пФ и более. Если порядок измеряемой ёмкости С x неизвестен, то переключателем В следует первоначально установить предел измерений наибольших ёмкостей, при котором возможная перегрузка вольтметра ограничивается из-за возрастания падения напряжения на резисторе R1.

В микрофарадметре с ограниченными пределами измерения перед началом измерений необходимо производить калибровку прибора. В схеме на рис. 4 для этой цели служит цепочка R2, С1. При нажатии кнопки Кн с конденсатора С1 на вход вольтметра подаётся напряжение, при котором стрелка его измерителя должна отклоняться до конца шкалы (или до определённой метки на шкале), чего добиваются регулятором чувствительности. Обычно берут R2 равным сопротивлению R о одного из пределов измерения, а С 1 равной ёмкости С п того же предела.

На рис. 5, а представлен один из вариантов параллельной схемы микрофарадметра. При свободных входных зажимах (что эквивалентно ёмкости С x = 0) регулировкой чувствительности вольтметра V добиваются отклонения стрелки его измерителя до конца шкалы. Включение в схему конденсатора С x приводит к тому, что напряжение на вольтметре, первоначально равное U п, снижается до значения U x , тем меньшего, чем больше ёмкость С x . Градуировочная характеристика микрофарадметра определяется формулой

U x /U п ≈ C о /(C о + C x), (5)

аналогичной формуле, определяющей градуировочную характеристику последовательных схем омметров.

Входное сопротивление вольтметра R в и частота тока питания F ограничивают выбор опорной ёмкости конденсатора С о, определяющей среднее значение шкалы, условием

C о ≥ 1,5/(F*R в) .

Например, при R в = 1 МОм и F = 50 Гц получаем С о ≥ 30000 пФ, т. е. прибор оказывается пригодным для измерения лишь сравнительно больших ёмкостей (не электролитических!) При высокочастотном источнике питания возможно снижение допустимых значений С о до сотен пикофарад, однако погрешность измерений может оказаться большой, если не учитывать входную ёмкость вольтметра.

Рис. 5. Параллельные схемы микрофарадметров

Для измерения ёмкостей электролитических конденсаторов пригодна схема на рис. 5, б. Благодаря включению диода Д на делителе напряжения R1, R2 действует пульсирующее напряжение U о. При С х = 0 с резистора R2 на вольтметр V (он может быть сравнительно низкоомным, например выпрямительным) подаётся напряжение полного отклонения U п. Включение конденсатора С х приводит к снижению напряжения на вольтметре в соответствии с формулой (5). При выбранном среднем значении шкалы ёмкостей С о и частоте F = 50 Гц необходимые значения сопротивлений делителя напряжения определяются формулами:

R1 = U о / (U п * 180*С о); R2 = R1*U п (U о -U п).

Изменение пределов измерений осуществляется посредством использования нескольких делителей напряжения с одинаковым коэффициентом деления U о /U а, но различными значениями сопротивлений R1 и R2. Вольтметр переменного тока V должен иметь закрытую схему входа, иначе напряжение на него следует подавать через электролитический конденсатор большой ёмкости.

Все рассмотренные схемы микрофарадметров позволяют измерять ёмкости конденсаторов с погрешностью 5-10%, а иногда и более. Выполнить их шкалу на основе расчёта градуировочной характеристики не всегда удаётся вследствие влияния различных трудно учитываемых факторов, например внутренних сопротивлений источника питания и измерительных приборов, нелинейности шкалы напряжений вольтметра и т. п. Поэтому при регулировке и градуировке микрофарадметров необходимо использовать магазины ёмкостей или наборы конденсаторов с допусками по ёмкости не более 5%.

Пример 1. Рассчитать последовательную схему микрофарадметра по рис. 3 на предел измерений от С н = 200 пФ до С м = 20000 пФ при условии, что напряжение питания не должно превышать 10 В. В приборе применить в качестве измерителя миллиамперметр на 1 мА.

Указание. Середине шкалы соответствует ёмкость С о ≈ (С н С м) 0,5 .

Ответ: С о = 2000 пФ, F ≥ 8 кГц. При выборе F = 10 кГц U ≥ 8В, R = 3...5 кОм

Ответ: С о = 3 мкФ, R1 = 37 кОм, R2 = 2 кОм; С" о = 30 мкФ, R"1 = 3,7 кОм, R"2 ≈ 200 Ом.

Микрофарадметры с равномерной шкалой

Микрофарадметр с равномерной шкалой может быть выполнен по схеме, аналогичной схемам ёмкостных частотомеров, в принципе отличаясь от последних лишь тем, что объектом измерений является не частота, а ёмкость. Действие таких приборов базируется на измерении среднего значения тока заряда или разряда проверяемого конденсатора, перезаряжаемого напряжением известной частоты.

На рис. 6, а, приведена схема измерительного блока микрофарадметра, питаемого импульсным напряжением u прямоугольной формы. Во время действия импульса через диод Д происходит заряд конденсатора С х до максимального напряжения U м. В интервале между импульсами конденсатор разряжается через измеритель (магнитоэлектрический микроамперметр) И до начального напряжения U н. В установившемся режиме при частоте повторения входных импульсов f и их амплитуде U п = U м - U н среднее значение протекающего через измеритель тока I x = C x U п f. При фиксированных значениях U п и f измеритель можно снабдить равномерной шкалой с отсчётом в значениях С х в соответствии с формулой

C х = I х /(U п f).

Предельное значение измеряемых ёмкостей

C п = I и /(U п f),

где I и - ток полного отклонения измерителя. Для сглаживания пульсаций и устранения колебаний стрелки измерителя служит конденсатор С, сопротивление которого при частоте f должно быть значительно меньшим сопротивления R и измерителя.

Результаты не изменятся, если измеритель включить в цепь зарядного тока последовательно с диодом Д2 (рис. 6, б); тогда разрядный ток конденсатора С x будет замыкаться через диод Д1. При измерении малых ёмкостей иногда применяют двухполупериодную схему включения измерителя (рис. 6, в). В этом случае через измеритель протекают и зарядный и разрядный токи, что позволяет получить требуемый предел измерений при напряжении U п или частоте f, вдвое меньших, чем в схемах с однополупериодным включением измерителя.

Рис. 6. Схемы измерительных блоков микрофарадметров с равномерной шкалой

Пределы измерений прибора задаются значениями С п и для их обеспечения при переключении пределов изменяют частоту повторения импульсов источника питания, определяемую формулой

f = I и (U п C п) . (6)

Перед началом измерений на каждом пределе должна производиться калибровка микрофарадметра, для чего к нему нажатием кнопки Кн присоединяют конденсатор ёмкостью С о = С п (рис. 6, а); при этом добиваются отклонения стрелки измерителя до конца шкалы посредством плавной регулировки частоты f, амплитуды импульсов U п или чувствительности измерителя (например, с помощью шунтирующего реостата R ш). Поскольку шкала прибора равномерна, то погрешность измерения ёмкостей в основном определяется погрешностью подбора опорной ёмкости С о, отклонение которой от требуемого номинала (С п) не должно превышать 1...5%.

Для получения правильных результатов измерений необходимо, чтобы за один период входного напряжения и конденсатор С x успевал полностью зарядиться и разрядиться (в пределах напряжений U м - U н). Легче всего это обеспечивается при прямоугольной форме входных импульсов и надлежащем выборе частоты их повторения f.

Как известно, в цепи, состоящей из элементов R и С, длительность заряда (разряда) конденсатора С до значения приложенного к этой цепи постоянного напряжения определяется постоянной времени τ = RC и практически не превосходит 5τ. Для того чтобы заряд (разряд) заканчивался в течение полупериода T/2 напряжения частоты f, необходимо выполнение условия

5RС = 5 τ <= T/2 = 1/(2*f),

которое удовлетворяется при частоте

f <= 1/(10*RС). (7)

Принимая максимально возможное сопротивление цепей заряда и разряда R = 10 кОм (с учётом выходного сопротивления Rвых генератора импульсов), получаем практическую формулу для выбора частоты повторения импульсов (в килогерцах):

f ≤ 10 4 / С п (8)

(где С п - в пикофарадах). В последнем условии часто принимают знак равенства. Тогда верхним пределам измерений С п - 100, 1000, 10 000 пФ и 0,1 мкФ будут соответственно отвечать частоты f = 100, 10, 1 и 0,1 кГц.

Условие (8) и формула (6) определяют необходимую амплитуду импульсов (в вольтах):

U п ≥ 0,1*I и

(где I и - в микроамперах). Например, при работе с измерителем, имеющим ток полного отклонения I и = 100 мкА, требуется амплитуда U п ≥ 10 В.

Сопротивление резистора R д (рис. 6, а) берётся таким, чтобы сопротивление цепи измерителя R д + R и значительно превышало (по крайней мере, в десятки раз) прямое сопротивление диода Д; в то же время оно не должно увеличивать общее сопротивление цепи разряда сверх допустимого значения (10 кОм). Если оба условия не удаётся одновременно удовлетворить, то резистор R д заменяют диодом, пропускающим ток разряда; при этом измеритель оказывается включённым по схеме на рис. 6, б. При расчёте прибора учитывают также характер выходного сопротивления R вых генератора импульсов, которое в зависимости от схемы генератора может быть постоянным, регулируемым или даже нелинейным (большим во время действия импульса и малым в интервале между импульсами).

Помимо равномерной шкалы ёмкостей, микрофарадметры могут иметь неравномерную шкалу с диапазоном показаний от 0 до ∞, подобную шкалам параллельных схем омметров. Характер шкалы (равномерная - Р, неравномерная - Н) в схеме на рис. 6, а, определяется установкой переключателя B1 . В положении последнего «Н» испытуемый конденсатор С х включается последовательно с опорным конденсатором С о, ёмкость которого задаёт предел измерений прибора и примерно соответствует середине его нелинейной шкалы.

Равномерная шкала измерения ёмкостей может быть получена и некоторыми другими методами. Так, если к выходу мультивибратора подключить дифференцирующую цепочку R, С х, то среднее напряжение импульсов одной полярности, снимаемых с резистора R, оказывается пропорциональным ёмкости С х. Для работы в таком приборе требуется чувствительный милливольтметр постоянного тока. Пределы измерений могут задаваться сопротивлениями резистора R. При частоте повторения импульсов f = 100 кГц были получены верхние пределы измерения ёмкостей С п = 10 и 100 пФ.

Пример 3. Произвести ориентировочный расчёт измерительного блока микрофарадметра с равномерной шкалой (рис. 6, а) для измерения ёмкостей с верхними пределами 300 и 3000 пФ, 0,03 и 0,3 мкФ, если измеритель прибора имеет данные: I и = 50 мкА, R и = 2600 Ом.

Ответ: С о = 300 и 3000 пФ, 0,03 и 0,3 мкФ; f = 30 и 3 кГц, 300 и 30 Гц; R д = 1,5 кОм; R ш = 10 кОм; С = 5..10 мкФ; U п = 5 В; R вых ≤ 6 кОм.

Измерение ёмкостей методом сравнения (замещения)

Данный метод базируется на сравнении действия, оказываемого измеряемой ёмкостью С х и известной ёмкостью С о на режим измерительной схемы.

Простейшая схема измерений, в которой ёмкости С х и С о сравниваются по значению их сопротивления переменному току, приведена на рис. 7. При включении конденсатора С x потенциометром R устанавливают в цепи ток, удобный для отсчёта или контроля по миллиамперметру переменного тока mA или другому низкоомному индикатору. Затем вместо конденсатора С x присоединяют к схеме магазин ёмкостей или образцовый (опорный) конденсатор переменной ёмкости и изменением его ёмкости С о добиваются прежнего показания индикатора. Это будет иметь место при С о = С x . Погрешность измерений зависит от чувствительности индикатора и погрешности отсчёта ёмкости С о; она может быть получена равной примерно 1% и менее.

Рис. 7. Схема измерения ёмкостей

При измерении ёмкостей свыше методом сравнения 5000 пФ схему измерений можно питать от сети переменного тока частотой 50 Гц. Для измерения меньших ёмкостей необходим генератор, работающий на более высоких частотах. Во всех случаях для обеспечения безопасности индикатора в цепь следует включать ограничительный конденсатор (С1) или резистор.

Метод сравнения в различных вариантах широко применяется в мостовых и резонансных измерителях ёмкостей. Он может быть реализован и в микрофарадметрах, рассмотренных в предыдущих параграфах, при существенном снижении погрешности измерений.

Измерительные мосты переменного тока

Для измерения параметров конденсаторов и катушек индуктивности широко применяются уравновешенные мосты переменного тока .

В общем случае плечи измерительного моста переменного тока (рис. 8) обладают комплексными сопротивлениями Z1, Z2, Z3 и Z4, одно из которых, например Z4, является объектом измерений. Питание моста производится от источника переменного тока частоты F, напряжение которого подводится непосредственно или через трансформатор Тр к одной из диагоналей моста. В другую диагональ включается индикатор нуля переменного тока ИН .

Рис. 8. Схема моста переменного тока

Так же как и в мостах постоянного тока , процесс измерения сводится к уравновешиванию моста переменного тока, которое характеризуется отсутствием разности потенциалов между вершинами а и б ; для этого необходимо, чтобы падения напряжения в плечах Z1 и Z4 (а также в плечах Z2 и Z3) были равны по амплитуде и совпадали по фазе. Равновесие достигается при выполнении двух условий:
1) равенстве произведений модулей полных сопротивлений противоположных плеч, т. е.

Z 4 Z 2 = Z 1 Z 3 ; (9)

2) равенстве сумм фазовых углов этих же плеч, т. е.

φ4 + φ2 = φ1 + φ3 . (10)

Если плечо моста обладает активным R и реактивным (ёмкостным или индуктивным) X сопротивлениями, действующими последовательно, то модуль полного сопротивления плеча

Z = (R 2 -Х 2) 0,5 , (11)

а его фазовый угол φ определяется из формулы

tg φ = X/R . (12)

Для чисто активных плеч (X = 0) фазовый угол φ = 0; для чисто ёмкостных и индуктивных плеч (R = 0) соответственно φ = -90° и φ = +90°. Если сопротивление плеча имеет смешанный (комплексный) характер, то фазовый угол |φ| < 90°.

Если сопротивления R и X представляются в параллельном соединении, то модуль полного сопротивления плеча

Z = 1/(1/R 2 +1/Х 2) 0,5 , (13)

а фазовый угол φ находится из формулы

tg φ = R/X . (14)

В этом случае угол φ = 0 при отсутствии реактивного сопротивления (X = ∞) и φ = +-90° при отсутствии активного сопротивления (R = ∞).

Для одновременного выполнения обоих условий равновесия приходится регулировать два параметра известных плеч моста; при этом оказывается возможным определить два параметра исследуемого плеча, например активную и реактивную составляющие его полного сопротивления.

Условие (9) можно выполнить всегда посредством регулировки элементов плеч моста. Второе же условие (10) выполнимо лишь при определённой компоновке схемы моста, например в случае, если все четыре плеча состоят из одинаковых элементов - резисторов, конденсаторов или катушек индуктивности. Обычно в целях упрощения схемы два плеча моста переменного тока составляются из элементов активного сопротивления - резисторов. Если эти плечи являются смежными (рис. 9), то два других плеча должны обладать реактивными сопротивлениями одинакового характера, т. е. оба должны содержать либо конденсаторы либо катушки индуктивности. Если плечи активного сопротивления являются противоположными, то два других плеча должны обладать реактивными сопротивлениями различного характера: одно - ёмкостного, а другое - индуктивного, имеющими фазовые углы разных знаков, сумма которых может быть сделана равной нулю.

В измерительных мостах переменного тока избегают применения катушек индуктивности (если, конечно, последние не являются объектами измерений), поскольку они обладают заметным активным сопротивлением и восприимчивы к магнитным полям; кроме того, при наличии стального сердечника индуктивность катушки не является стабильной. В качестве регулируемых элементов в мостах используются переменные резисторы и конденсаторы, а также магазины сопротивлений и ёмкостей.

В простейших мостах, питаемых от источников звуковой частоты, индикаторами нуля часто служат головные телефоны. Мост уравновешивают по минимальной слышимости тона основной частоты, что уменьшает ошибку измерений, обусловленную действием гармоник, и позволяет снизить требования к генератору питания.

В измерительных мостах промышленного изготовления в качестве индикаторов нуля применяют выпрямительные или электронные милливольтметры, а также осциллографические индикаторы на малогабаритных электроннолучевых трубках; последние в отличие от других индикаторов обладают фазочувствительностью, что позволяет определять направление, в котором следует производить уравновешивание моста.

Достоинствами уравновешенных мостов переменного тока являются малая погрешность измерения, не превышающая в лучших образцах 1%, широкие пределы измерений, возможность универсального применения для измерения различных электрических величин. Главным их недостатком является сложность и длительность процесса уравновешивания. В последнем отношении определённые преимущества имеют неуравновешенные и автоматические мосты переменного тока.

В неуравновешенных мостах переменного тока амплитуда и фаза выходного напряжения на зажимах индикаторной диагонали зависят как от модуля, так и от состава объекта измерений Zx. При сравнительно малом отклонении от состояния равновесия активная и реактивная составляющие выходного напряжения оказываются примерно пропорциональными приращениям аналогичных составляющих комплексного сопротивления Zx относительно тех значений, при которых мост уравновешен Посредством двух фазочувствительных систем удаётся разделить составляющие выходного напряжения, сдвинутые по фазе на 90°, которые затем раздельно измеряются двумя индикаторами; отчёт по шкалам последних производится соответственно в значениях активной и реактивной составляющих сопротивления Zx.

В автоматических мостах переменного тока выделенные фазочувствительными системами составляющие выходного напряжения приводят в действие два электродвигателя, которые посредством приводов воздействуют на элементы регулировки мостовой схемы до момента достижения состояния равновесия.

Мостовой метод измерения параметров конденсаторов

Мосты, применяемые для измерения параметров конденсаторов, разделяются на магазинные и реохордные (линейные). Простейший (однопредельный) магазинный мост, пригодный для измерения ёмкостей в десятки и сотни пикофарад, может быть составлен из четырёх конденсаторов: измеряемого, переменного со шкалой ёмкостей (в смежном плече) и двух постоянных с одинаковой ёмкостью (сотни пикофарад). При использовании в качестве индикатора головных телефонов источником питания моста может служить радиотрансляционная сеть. Широкодиапазонные магазинные мосты сложнее реохордных, однако они обеспечивают меньшую погрешность измерения и могут иметь равномерные отсчётные шкалы. Диапазон ёмкостей, измеряемых мостовым методом, лежит примерно в пределах от 10 пФ до 10...30 мкФ.

На рис. 9, а приведена схема многопредельного магазинного моста. Его уравновешивают с помощью конденсатора переменной ёмкости С1 и переменного резистора R1. Применяя к данной схеме условие равновесия (9), получаем

R2*(R x 2 + 1/(2*π*F*C x) 2) 0,5 = R3*(R1 2 +1/(2*π*F*C 1) 2) 0,5

Учитывая, что φ 2 = φ 3 = 0, второе условие равновесия (10) можно записать в виде равенства φ x = φ 1 или tg φ x = tg φ 1 или, согласно формуле (12),

1/(2*π*F*C x *R x) = 1/(2*π*F*C 1 *R 1).

Решая совместно приведённые выше уравнения, находим:

С x = С1(R2/R3) ; (15)

R x = R1(R3/R2) . (16)

При фиксированном отношении сопротивлений плеч R2/R3 конденсатор С1 и резистор R1 можно снабдить шкалами с отсчётом соответственно в значениях ёмкостей С х и сопротивлений потерь R x . Расширение диапазона измерений достигается применением группы переключаемых резисторов R3 (или R2) различных номиналов, обычно различающихся в 10 раз. Мост уравновешивается быстро, поскольку регулировки, осуществляемые конденсатором С1 и резистором R1, взаимонезависимы. Если мост предназначается для измерения ёмкостей, меньших 0,01 мкФ, для которых потери на низких частотах очень малы, то резистор R1 может отсутствовать.

Рис. 9 Схемы магазинных мостов для измерения параметров конденсаторов

В целях упрощения конструкции в некоторых измерительных мостах конденсатор С1 берётся постоянной ёмкости, а в качестве регулируемых элементов используются два переменных резистора, например R1 и R2 (рис. 9, б). Из формул (15) и (16) следует, что обе регулировки такого моста оказываются взаимосвязанными, поэтому его уравновешивание, контролируемое по показаниям выпрямительного индикатора, должно осуществляться способом последовательного приближения к минимуму путем попеременного изменения сопротивлений R1 и R2. Значения ёмкостей С х находятся по шкале резистора R2 с учётом множителя, определяемого установкой переключателя В . Поскольку непосредственная оценка сопротивлений потерь R x оказывается невозможной, то отсчёт по шкале резистора R1 обычно выполняется в значениях тангенса угла потерь:

tg δ = 2*πF*C x *R x = 2*π*F*C 1 *R 1 ,

который при фиксированной частоте F однозначно определяется значением сопротивления R1. В справедливости последней формулы легко убедиться, если перемножить соответственно левые и правые части равенств (15) и (16).

Простые измерители ёмкостей выполняются по схеме реохордного моста, в котором обычно предусматривается возможность измерения и сопротивлений, а иногда и индуктивностей. Схема универсального реохордного моста приведена в статье Измерение параметров катушек индуктивности на рис. 5.

Пример 4. Произвести поверочный расчёт схемы магазинного моста по рис. 9, б, для измерения ёмкостей на трех пределах с верхними значениями 10000 пФ, 0,1 и 1 мкФ, а также тангенса угла потерь от 0 до 0,01, если ёмкость С1 = 0,01 мкФ, а полное сопротивление R2 - 10 кОм. Напряжение питания 10 В, частота 50 Гц. Измеритель И имеет параметры: I и = 100 мкА, R и = 900 Ом.

Результаты расчёта приведены на схеме.

Резонансные измерители ёмкостей

Помимо измерения частоты электрических колебаний резонансные методы широко применяются для измерения малых ёмкостей и индуктивностей, добротности, собственной или резонансной частоты настройки и других параметров радиодеталей и колебательных систем.

Резонансная схема измерения ёмкостей (рис. 10) обычно включает в себя генератор высокой частоты, с контуром которого LС слабо связывается индуктивно (или через ёмкость) измерительный контур, состоящий из опорной катушки индуктивности L о и испытуемого конденсатора С х. Изменением ёмкости конденсатора С генератор настраивают в резонанс с собственной частотой f о измерительного контура по экстремальным показаниям индикатора резонанса, например электронного вольтметра V. При известной частоте настройки генератора f о измеряемая ёмкость определяется формулой

С х = 1/((2*π*f о) 2 *L о) ≈ 0,0253/(f о 2 L о) (17)

При фиксированном значении L о конденсатор С можно снабдить шкалой с отсчётом в значениях ёмкостей С х.

Пределы измерений ёмкостей определяются значением индуктивности L о и диапазоном частот генератора. Например, при L о = 100 мкГ и диапазоне генератора 160-3500 кГц прибор будет измерять ёмкости от десятков пикофарад до сотых долей микрофарад. Для расширения пределов измерений ёмкостей при ограниченном частотном диапазоне генератора применяют несколько сменных катушек L о различной индуктивности, а также включают испытуемые конденсаторы в измерительный контур последовательно с конденсаторами известной ёмкости. Ёмкости более 0,01-0,05 мкФ резонансным методом обычно не измеряются, так как на низких частотах резонансные кривые колебательных контуров становятся тупыми, что затрудняет фиксацию резонанса.

В качестве индикаторов резонанса используют чувствительные высокочастотные приборы, реагирующие на ток или напряжение, действующие в измерительном контуре, например электронные вольтметры со стрелочным или электронно-световым индикатором, электроннолучевые осциллографы, термоэлектрические приборы и др. Индикатор резонанса не должен вносить в измерительный контур заметного затухания.

Рис. 10. Схема измерения ёмкостей резонансным методом

Верхний предел измеряемых подобным методом ёмкостей равен разности между максимальной С м и начальной С н ёмкостями конденсатора С о. Конденсаторы, ёмкость которых превышает значение С м - С н, можно подключать к контуру последовательно с постоянным конденсатором известной ёмкости Сх. При этом порядок измерений остаётся прежним, но измеряемая ёмкость подсчитывается по формуле

С x = С1 (С о1 - С о2)/(С 1 - С о1 + С о2).

Например, при С 1 = 600 пФ, С о1 = 500 пФ и С о2 = 100 пФ получаем С x = 1200 пФ. Применяя несколько сменных конденсаторов С1 различных номиналов, можно получить ряд пределов измерений. Если задаться верхним пределом измеряемых ёмкостей С п, то необходимая ёмкость С x определится формулой:

С 1 = С п (С м -С н)/(С п -С м + С н).

Например, при С п = 2000 пФ, С м = 500 пФ и Сн = 20 пФ конденсатор должен обладать ёмкостью С1 = 630 пФ.

Различные варианты резонансных методов реализуются в специальных измерительных приборах или посредством малогабаритных приставок к типовой, имеющей частотные шкалы, радиоаппаратуре (к последним относятся высокочастотные измерительные генераторы, радиоприёмники и т. п.).

Рис. 11. Схема резонансного измерителя ёмкостей, использующего явление поглощения

На рис. 11 приведена схема резонансного измерителя ёмкостей, основанного на использовании явления поглощения (абсорбции). Прибор содержит маломощный генератор по схеме ёмкостной трёхточки, с колебательным контуром которого индуктивно связан измерительный контур L2, С6, С7. Связь между контурами устанавливается сравнительно сильной (например, посредством использования общего ферритового сердечника для катушек L1 и L2) с целью обеспечения заметного влияния измерительного контура на режим генератора. Индикатором резонанса служит микроамперметр постоянного тока mA , включённый в цепь базы транзистора Т. При настройке измерительного контура в резонанс с частотой генератора энергия, поглощаемая контуром, оказывается наибольшей. Это вызывает резкое уменьшение постоянной составляющей тока базы, измеряемой микроамперметром mA , что обеспечивает чёткую фиксацию состояния резонанса.

Для уменьшения погрешности измерения малых ёмкостей можно в измерительный контур включить два конденсатора переменной ёмкости (С6 и С7 на рис. 11) с максимальными ёмкостями, например, 500 и 50 пФ. Перед измерениями оба конденсатора устанавливаются на максимальную ёмкость и с помощью подстроечного сердечника одной из катушек добиваются резонансной настройки генератора и измерительного контура. Затем, присоединив к контуру конденсатор С х, в зависимости от предполагаемой ёмкости последнего одним из конденсаторов С6 или С7 восстанавливают резонанс. Отсчёт по шкалам конденсаторов С6 и С7 желательно производить непосредственно в значениях ёмкостей С х.

Рис 12. Схема измерения ёмкостей резонансным методом с помощью радиоприёмника

Рассмотренный вариант резонансного метода может быть реализован с помощью простейшей приставки к радиоприёмнику, имеющему внутреннюю магнитную антенну. Приставка (рис. 12) представляет собой измерительный контур L, С о, собственная частота которого при максимальном значении ёмкости С о должна находиться в пределах какого-либо частотного поддиапазона приёмника. Приёмник настраивают на частоту одной из хорошо принимаемых передающих радиостанций этого поддиапазона, а затем катушку L располагают вблизи приёмника, параллельно его магнитной антенне. При наибольшей ёмкости С о подстроечным сердечником катушки L контур настраивают в резонанс с частотой настройки приёмника, который обнаруживается по ослаблению слышимости звуковых сигналов радиостанции, а затем производят измерение ёмкости С х методом замещения.

Высокая точность фиксации состояния резонанса достигается при гетеродинном методе (методе нулевых биений). В гетеродинном измерителе ёмкостей имеется два одинаковых высокочастотных гетеродина, колебания которых смешиваются в детекторном каскаде, нагруженном на телефоны. При максимальной ёмкости основных контурных конденсаторов переменной ёмкости оба гетеродина подстраиваются на одну и ту же частоту, что контролируется по нулевым биениям. Затем параллельно одному из этих конденсаторов включают конденсатор С x , ёмкость которого определяют методом замещения.

Если оба гетеродина выполнить совершенно идентичными, то прибор можно успешно применить для выравнивания ёмкостей сдвоенных и строенных блоков конденсаторов переменной ёмкости. Для этого к контурам обоих гетеродинов одновременно подключают по одной секции проверяемого блока конденсаторов и при их максимально введённой ёмкости добиваются нулевых биений. Если обе секции одинаковы, то при сопряжённом уменьшении их ёмкостей нулевые биения должны сохраняться.

Однозначная связь между ёмкостью колебательного контура генератора и частотой возбуждаемых колебаний позволяет создать измеритель ёмкостей, состоящий из генератора, в контур которого включаются конденсаторы C x , и частотомера, имеющего шкалу с непосредственным отсчётом значений С x .

Во всех вариантах применения резонансного метода предварительную регулировку измерительной схемы следует выполнять при подключённых к ней проводниках связи с объектом измерений, длина которых должна быть возможно меньшей.

ESR метр своими руками . Есть широкий перечень поломок аппаратуры, причиной которых как раз является электролитический . Главный фактор неисправности электролитических конденсаторов, это знакомое всем радиолюбителям «высыхание», которое возникает по причине плохой герметизации корпуса. В данном случае увеличивается его емкостное или, иначе говоря, реактивное сопротивление в следствии уменьшения его номинальной емкости.

Помимо этого, в ходе работы в нем проходят электрохимические реакции, которые разъедают точки соединения выводов с обкладками. Контакт ухудшается, в итоге образуется «контактное сопротивление», доходящее иногда до нескольких десятков Ом. Это точно также, если к исправному конденсатору последовательно подключить резистор, и к тому же этот резистор размещен внутри него. Такое сопротивление еще именуют «эквивалентное последовательное сопротивление» или же ESR.

Существование последовательного сопротивления отрицательно влияет на работу электронных устройств, искажая работу конденсаторов в схеме. Чрезвычайно сильное влияние оказывает повышенное ESR (порядка 3…5 Ом) на работоспособность , приводя к сгоранию дорогих микросхем и транзисторов.

Ниже в таблице приведены средние величины ESR (в миллиоммах) для новых конденсаторов различной емкости в зависимости от напряжения, на которое они рассчитаны.

Не секрет, что реактивное сопротивление уменьшается с повышением частоты. К примеру, при частоте 100кГц и емкости 10мкФ емкостная составляющая будет не более 0,2 Ом. Замеряя падение переменного напряжения имеющего частоту 100 кГц и выше, можно полагать, что при погрешности в районе 10…20% итогом замера будет активное сопротивление конденсатора. Поэтому совсем не сложно собрать .

Описание ESR метра для конденсаторов

Генератор импульсов, имеющий частоту 120кГц, собран на логических элементах DD1.1 и DD1.2. Частота генератора определяется RC-цепью на элементах R1 и C1.

Для согласования введен элемент DD1.3. Для увеличения мощности импульсов с генератора в схему введены элементы DD1.4…DD1.6. Далее сигнал проходит через делитель напряжения на резисторах R2 и R3 и поступает на исследуемый конденсатор Сх. Блок измерения переменного напряжения содержит диоды VD1 и VD2 и мультиметр, в качестве измерителя напряжения, к примеру, М838. Мультиметр необходимо перевести в режим измерения постоянного напряжения. Подстройку ESR метра осуществляют путем изменения величины R2.

Микросхему DD1 — К561ЛН2 можно поменять на К1561ЛН2. Диоды VD1 и VD2 германиевые, возможно использовать Д9, ГД507, Д18.

Радиодетали ESR метра расположены на , которую можно изготовить своими руками. Конструктивно устройство выполнено в одном корпусе с элементом питания. Щуп Х1 выполнен в виде шила и прикреплен к корпусу устройства, щуп X2 – провод не более 10 см в длину на конце которого игла. Проверка конденсаторов возможна прямо на плате, выпаивать их не обязательно, что существенно облегчает поиск неисправного конденсатора во время ремонта.

Настройка устройства

1, 5, 10, 15, 25, 30, 40, 60, 70 и 80 Ом.

К щупам X1 и X2 необходимо подсоединить резистор в 1 Ом и вращением R2 добиться, чтобы на мультиметре было 1мВ. Затем вместо 1 Ом подключить следующий резистор (5 Ом) и не изменяя R2 записать показание мультиметра. То же самое проделать и с оставшимися сопротивлениями. В результате этого получится таблица значений, по которой можно будет определять реактивное сопротивление.

При ремонте или радиоконструировании часто приходится сталкиваться с таким элементом, как конденсатор. Его главной характеристикой является ёмкость. Из-за особенностей устройства и режимов работы выход из строя электролитов становится одной из основных причин неисправностей радиоаппаратуры. Для определения ёмкости элемента используются разные приборы для проверки. Их несложно приобрести в магазине, а можно изготовить и самому.

Физическое определение конденсатора

Конденсатор - электрический элемент, служащий для накопления заряда или энергии. Конструктивно радиоэлемент представляет собой две пластины, выполненные из токопроводящего материала, между которыми располагается слой диэлектрика. Токопроводящие пластины называются обкладками. Они не связаны между собой общим контактом, но при этом каждая имеет собственный вывод.

Конденсаторы имеют многослойный вид, в них слой диэлектрика чередуется со слоями обкладок. Они представляют собой цилиндр или параллелепипед с закруглёнными углами. Основной параметр электрического элемента - это ёмкость, единицей измерения которой является фарада (F, Ф). На схемах и в литературе радиодеталь обозначается латинской буквой C. После символа указывается порядковый номер на схеме и значение номинальной ёмкости.

Так как одна фарада - это довольно большая величина, то реальные значения ёмкости конденсатора значительно ниже. Поэтому при записи принято использовать условные сокращения:

  • П - пикофарада (pF, пФ);
  • Н - нанофарада (nF, нФ);
  • М - микрофарада (mF, мкФ).

Принцип работы

Принцип действия радиодетали зависит от вида электрической сети. При подключении к выводам обкладок источника постоянного тока носители заряда попадают на токопроводящие пластины конденсатора, где происходит их накопление. Вместе с тем на выводах обкладок появляется разность потенциалов. Её значение увеличивается до тех пор, пока не достигнет величины, равной источнику тока. Как только это значение выровняется, на обкладках перестаёт накапливаться заряд, а электрическая цепь разрывается.

В сети с переменным током конденсатор представляет собой сопротивление. Его величина связана с частотой тока: чем она выше, тем ниже сопротивление и наоборот. При воздействии на радиоэлемент переменной силы тока происходит накопление заряда. Со временем ток заряда уменьшается и пропадает полностью. Во время этого процесса на обкладках устройства концентрируются заряды разных знаков.

Диэлектрик, проложенный между ними, препятствует их перемещению. В момент смены полуволны происходит разряд конденсатора через нагрузку, подключённую к его выводам. Возникает ток разряда, то есть в электрическую цепь начинает поступать накопленная радиоэлементом энергия.

Конденсаторы применяются практически в любой электронной схеме. Они служат элементами фильтра для преобразования пульсаций тока и отсечения различных частот. Кроме этого, они компенсируют реактивную мощность.

Характеристики и виды

Измерения параметров конденсаторов связаны с нахождением величин их характеристик. Но среди них наиболее важной является ёмкость, которая обычно и измеряется. Эта величина обозначает количество заряда, которое может накопить радиоэлемент. В физике электроёмкостью называют величину, равную отношению заряда на любой обкладке к разности потенциалов между ними.

При этом ёмкость конденсатора зависит от площади обкладок элемента и толщины диэлектрика. Кроме ёмкости радиоприбор характеризуется также полярностью и величиной внутреннего сопротивления. Применяя специальные приборы, эти величины также можно измерить. Сопротивление устройства влияет на саморазряд элемента. Кроме этого, к основным характеристикам конденсатора относят:

Классифицируются конденсаторы по разным критериям, но в первую очередь их разделяют по типу диэлектрика. Он может быть газообразным, жидким и твёрдым. Чаще всего в качестве него используются стекло, слюда, керамика, бумага и синтетические плёнки. Кроме того, конденсаторы различаются по способности изменения величины ёмкости и могут быть:

Также в зависимости от назначения конденсаторы бывают общего и специального назначения. Первого вида приборы являются низковольтными, а второго - импульсными, пусковыми и т. д. Но независимо от вида и назначения принцип измерения их параметров идентичный.

Приборы для измерения

Для измерения параметров конденсаторов используются как специализированные приборы, так и общего применения. Измерители ёмкости по своему типу разделяют на два вида: цифровые и аналоговые. Специализированные устройства могут измерить ёмкость элемента и внутреннее его сопротивление. Простым тестером обычно диагностируется только пробой диэлектрика или большая утечка. Кроме этого, если тестер многофункциональный (мультиметр), то им можно измерить и ёмкость, но обычно предел его измерения невысокий.

Таким образом, в качестве прибора для проверки конденсаторов можно использовать:

  • ESR или RLC-метр;
  • мультиметр;
  • тестер.

При этом диагностику элемента прибором, относящемся к первому типу, можно проводить без выпаивания из схемы. Если же используется второй или третий тип, то элемент или хотя бы один из его выводов необходимо от неё отсоединить.

Использование ESR-метра

Измерение параметра ESR очень важно при исследовании конденсатора на работоспособность. Дело в том, что почти вся современная техника является импульсной, использующей в своей работе высокие частоты. Если эквивалентное сопротивление конденсатора велико, то на нём происходит выделение мощности, а это вызывает нагрев радиоэлемента, приводящий к его деградации.

Конструктивно специализированный измеритель представляет собой корпус с жидкокристаллическим экраном. В качестве его источника питания используется батарейка типа КРОНА. В приборе предусмотрено два разъёма разного цвета, к которым подключаются щупы. Красного цвета щуп считается положительным, а чёрного - отрицательным. Это сделано для того, чтобы можно было правильно проводить измерения полярных конденсаторов.

Перед измерением ESR сопротивления радиодеталь необходимо разрядить, иначе возможен выход прибора из строя. Для этого выводы конденсатора замыкаются сопротивлением порядка одного килоома на короткое время.

Непосредственно измерение происходит путём соединения выводов радиодетали со щупами прибора. В случае электролитического конденсатора необходимо соблюдать полярность, то есть соединять плюс с плюсом, а минус с минусом. После этого прибор включается, и через некоторое время на его экране появляются результаты измерения сопротивления и ёмкость элемента.

Следует отметить, что основная масса таких приборов изготавливается в Китае. В основе их действия лежит использование микроконтроллера, работой которого управляет программа. При измерении контроллер сравнивает сигнал, прошедший через радиоэлемент, с внутренним и на основании различий по сложному алгоритму выдаёт данные. Поэтому точность измерения таких приборов зависит в основном от качества комплектующих, используемых при их изготовлении.

При измерении ёмкости можно также воспользоваться измерителем иммитанса. По своему виду он похож на ESR-метр, но может дополнительно измерять индуктивность. Принцип его действия основан на прохождении тестового сигнала через измеряемый элемент и анализе полученных данных.

Проверка мультиметром

Мультиметром можно измерить почти все основные параметры, но точность этих результатов будет ниже, чем при использовании ESR-прибора. Измерение с помощью мультиметра можно представить следующим образом:

Если тестер выведет на экран значение OL или Overload, то это означает, что ёмкость слишком высока для измерения мультиметром или конденсатор пробит. Когда перед полученным результатом впереди будет стоять несколько нулей, предел измерения необходимо понизить.

Применение тестера

Если под рукой не окажется мультиметра, способного измерить ёмкость, то можно провести измерения подручными средствами. Для этого понадобятся резистор, блок питания с постоянным уровнем выходного сигнала и устройство, измеряющее напряжение. Методику измерения лучше рассмотреть на конкретном примере.

Пусть будет конденсатор, ёмкость которого неизвестна. Чтобы её узнать, понадобится выполнить следующие действия:

Такой алгоритм измерения нельзя назвать точным, но общее представление о ёмкости радиоэлемента он вполне способен дать.

Если есть познания в радиолюбительстве, можно собрать прибор для измерения ёмкости своими руками. Существует множество схемотехнических решений разного уровня сложности. Многие из них основаны на измерении частоты и периода импульсов в цепи с измеряемым конденсатором. Такие схемы сложны, поэтому проще использовать измерения, основанные на вычислении реактивного сопротивления при прохождении импульсов фиксированной частоты.

В основе схемы такого прибора лежит мультивибратор, частота работы которого определяется ёмкостью и сопротивлением резистора, подключёнными к выводам D1.1 и D1.2. С помощью переключателя S1 устанавливается диапазон измерения, то есть изменяется частота. С выхода мультивибратора импульсы поступают на усилитель мощности и далее на вольтметр.

Калибровка прибора проводится на каждом пределе с помощью эталонного конденсатора. Чувствительность устанавливается резистором R6.

Ёмкость – это мера способности конденсатора накапливать заряды. Ёмкость измеряется в фарадах, по имени почетного члена Петербургского университета английского физика Майкла Фарадея.

Что такое емкость?

Если удалить одиночный электропроводник бесконечно далеко, исключить влияние заряженных тел друг на друга, то потенциал удаленного проводника станет пропорционален заряду. Но у отличающихся по размеру проводников потенциалы не совпадают.

Единицей емкости конденсатора в СИ является фарад. Коэффициент пропорциональности обозначают буквой С – это емкость, на которую влияет размер и внешняя структура проводника. Материал, фазовое состояние вещества электрода роли не играют – заряды распределяются на поверхности. Поэтому в международных правилах СГС ёмкость измеряется не в фарадах, а в сантиметрах.

Уединенный шар радиусом 9 млн км (1400 радиусов Земли) содержит 1 фарад. Отдельный проводящий элемент удерживает заряды в недостаточных для применения в технике количествах. По технологиям XXI в. создается ёмкость конденсаторов с единицами измерений выше 1 фарада.

Накапливать требуемое для работы электронных схем количество электричества способна структура из минимум 2 электродов и разделяющего диэлектрика. В такой конструкции положительные и отрицательные частицы взаимно притягиваются и сами себя держат. Диэлектрик между электронно-позитронной парой не допускает аннигиляции. Подобное состояние зарядов называется связанным.

Раньше для измерения электрических величин применяли громоздкое оборудование, не отличающееся точностью. Теперь, как измерить ёмкость тестером, знает даже начинающий радиолюбитель.

Маркировка на конденсаторах

Знать характеристики электронных приборов требуется для точной и безопасной работы.

Определение ёмкости конденсатора включает измерение величины приборами и чтение маркировки на корпусе. Обозначенные значения и полученные при измерениях отличаются. Это вызвано несовершенством производственных технологий и эксплуатационным разбросом параметров (износ, влияние температур).

На корпусе указана номинальная емкость и параметры допустимых отклонений. В бытовых устройствах используют приборы с отклонением до 20%. В космической отрасли, военном оборудовании и в автоматике опасных объектов разрешают разброс характеристик в 5-10%. Рабочие схемы не содержат значений допусков.

Номинальная емкость кодируется по стандартам IEC – Международной электротехнической комиссии, которая объединяет национальные организации по стандартам 60 стран.

Стандарт IEC использует обозначения:

  1. Кодировка из 3 цифр. 2 знака в начале – количество пФ, третий – число нулей, 9 в конце – номинал меньше 10 пФ, 0 спереди – не больше 1 пФ. Код 689 – 6,8 пФ, 152 – 1500 пФ, 333 – 33000 пФ или 33 нФ, или 0,033 мкФ. Для облегчения чтения десятичная запятая в коде заменяется буквой “R”. R8=0,8 пФ, 2R5 – 2,5 пФ.
  2. 4 цифры в маркировке. Последняя – число нулей. 3 первых – величина в пФ. 3353 – 335000 пФ, 335 нФ или 0,335 мкФ.
  3. Использование букв в коде. Буква µ – мкФ, n – нанофарад, p – пФ. 34p5 – 34,5 пФ, 1µ5 – 1,5 мкФ.
  4. Планерные керамические изделия кодируют буквами A-Z в 2 регистрах и цифрой, обозначающей степень числа 10. K3 – 2400 пФ.
  5. Электролитические SMD приборы маркируются 2 способами: цифры – номинальная емкость в пФ и рядом или во 2 строчке при наличии места – значение номинального напряжения; буква, кодирующая напряжение и рядом 3 цифры, 2 определяют емкость, а последняя – количество нулей. А205 значит 10 В и 2 мкФ.
  6. Изделия для поверхностного монтажа маркируются кодом из букв и чисел: СА7 – 10 мкФ и 16 В.
  7. Кодировки – цветом корпуса.

Маркировка IEC, национальные обозначения и кодировки брендов делают запоминание кодов бессмысленным. Разработчикам аппаратуры и мастерам-ремонтникам требуются справочные источники.

Вычисление с помощью формул

Вычисление номинальной емкости элемента требуется в 2 случаях:

  1. Конструкторы электронной аппаратуры рассчитывают параметр при создании схем.
  2. Мастера при отсутствии конденсаторов подходящей мощности и емкости используют расчет элемента для подбора из доступных деталей.

RC цепи рассчитывают с применением величины импеданса – комплексного сопротивления (Z). Rа – потери тока на нагревание участников цепи. Ri и Rе – учитывают влияние индуктивности и ёмкости элементов. На выводах резистора в RC цепи напряжение Uр обратно пропорционально Z.

Тепловое сопротивление увеличивает потенциал на нагрузке, а реактивное уменьшает. Работа конденсатора на частотах выше резонансных, когда растет реактивная составляющая комплексного сопротивления, приводит к потерям напряжения.

Частота резонанса обратно пропорциональна способности накапливать заряд. Из формулы для определения Fр вычисляют, какие значения Ск (емкости конденсатора) требуются для работы цепи.

Для расчета импульсных схем используют постоянную времени цепи, определяющую воздействие RC на структуру импульса. Если знают сопротивление цепи и время заряда конденсатора, по формуле постоянной времени вычисляют емкость. На истинность результата влияет человеческий фактор.

Мастера используют параллельные и последовательные соединения конденсаторов. Формулы расчета обратны формулам для резисторов.

Последовательное соединение делает емкость меньше меньшей в соединении элементов, параллельная схема суммирует величины.

Измеряя параметры, конденсатор предварительно разряжают, замкнув выводы между собой отверткой с изоляцией на ручке. Если этого не сделать, маломощный мультиметр выйдет из строя.

Ответ на вопрос, как проверить емкость конденсатора мультиметром с режимом “Сх” такой:

  1. Включить режим “Сх” и подобрать предел замера – 2000 пФ – 20 мкФ в стандартном приборе;
  2. Вставить конденсатор в гнезда в приборе или приложить щупы к выводам конденсатора и посмотреть значение на шкале прибора.

Амперовольтметром или мультиметром определяют наличие внутри корпуса короткого замыкания или обрыва.

Полярный конденсатор включают в цепь прибора с учетом направления тока. Электроды изделия производители маркируют. Конденсатор, рассчитанный для напряжения 1-3 В, при обратном токе выше нормы выйдет из строя.

Перед тем как измерить характеристики, полярный электролитический конденсатор выпаивают из платы. Включают мультиметр в режим измерения сопротивления или проверки полупроводников. Прикладывают щупы к электродам полярного конденсатора – плюс к плюсу, минус к минусу. Исправная емкость покажет плавный рост сопротивления. По мере заряда ток уменьшается, ЭДС растет и достигает напряжения источника питания.

Обрыв в конденсаторе будет выглядеть на мультиметре как бесконечное сопротивление. Прибор не отреагирует или стрелка на аналоговом экземпляре едва шевельнется.

При пробое элемента измеряемый параметр не соответствует номинальному значению в меньшую сторону, пропорционально величине пробоя.

Если задаться вопросом, как измерить мультиметром комплексное или эквивалентное последовательное сопротивление (ESR конденсатора), то без приставки сделать это проблематично. Реактивные свойства конденсатор проявляет при высокочастотном токе.

Прочие способы измерения

Измеритель емкости конденсаторов своими руками собирают по схемам импульсных устройств. Последовательности RC цепей с переменными резисторами создают на выходе изделия серии сигналов со ступенчатым изменением частоты. Для наладки устройства используют мультиметр, с которым будет применяться приставка.

Набор проверенных конденсаторов поочередно подключают к конструкции и настраивают точность работы в каждом поддиапазоне.

Измеритель ёмкости полярных электролитических элементов своими руками схематически реализуется и настраивается, как часть приставки без колебательного контура. На выходе вместо импульсного – постоянное напряжение.

В цифровых измерителях ёмкости источник питания – высокостабильный. “Плавающие” параметры элементов, из которых собирается схема, дадут неприемлемую для точности измерений погрешность.

На логических элементах создаются источники переменного импульсного тока для замеров ESR.

Недорогие приборы для измерения емкости конденсатора, типа мостовых RLC устройств с дополнительной функцией проверки SMD сопротивлений, сетевой зарядкой и жидкокристаллическим дисплеем, сами размером с палец. Выполняют функции профессионального метрологического комплекса. Способны выступать в роли измерителя емкости электролитических конденсаторов, как полярных, так и переменных.

В наше время, когда, практически, все источники питания радиоэлектронной аппаратуры строятся по импульсным схемам, одним из наиболее востребованных приборов ремонтника есть измеритель ESR электролитических конденсаторов или ESR метр. Долгое время я проверял исправность таких конденсаторов цифровым измерителем ёмкости, заряжающим конденсаторы высокочастотной пилой. Но, так как этот прибор был изготовлен более 10 лет назад, на рассыпухе - мелкая логика и светодиодные индикаторы, - пользоваться таким устаревшим прибором, да ещё и без "настоящего" измерителя ЭПС, считаю сейчас даже просто морально некошерным. Поэтому, с момента освоения прошивки современных микропроцессоров, я всё время мечтал о схеме, отвечающей требованиям нашего времени - минимум деталей, современная элементная база и схемное решение, одновременное отображение значения C и ESR на LCD, никаких реле, рубильников и прочей лабуды, требующей лишних движений. И вот, наконец-то, после многих лет просмотра не одного десятка схем (и всё не то) описание такого прибора мне попалось. Журнал "Радио" №6 за 2010 год, страница 19 - в это схемотехническое и программное решение я влюбился с первого взгляда:-) Популярный МК ATtiny2313, LCD индикатор в две строки по восемь символов, простая и понятная измерительная часть, хорошая программная поддержка. Всё - делаю!

Но, как всегда - редко бывает такая схема, которую я повторяю 1:1, - беру в руки красную пасту, и, а-ля школьный учитель, начинаю энергично вычёркивать со схемы лишние фрагменты. Автономное питание - убираем, так как прибор будет работать в помещении от сетевого адаптера, оставляю только разъём для его подключения. Автоматическое отключение источника питания от схемы и его квазисенсорное включение - вычёркиваем - это нерациональное пижонство. Подключение к компу через СОМ-порт - убираем - какой дурак будет включать целый компьютер ради замера ёмкости одного конденсатора, что и так отображается на ЖКИ прибора; подсветку индикатора делаю постоянно включенной. Итого - схема "похудела" процентов на 25:-) Кроме того, после внимательного чтения описания и вникания в принцип работы измерителя была обнаружена и одна ошибка на схеме - источники тока двух поддиапазонов измерения оказались перепутаны между собой - исправляем...
Вот так и будем собирать. Ниже представлена схема ESR измерителя:

Естественно, считаю очень экстравагантным решение автора использовать на одной плате современную импортную базу одновременно с устаревшей отечественной, да ещё и с не самыми лучшими параметрами (КС133 не выдерживают никакой критики). Поэтому сразу решаю, что вместо КТ3107 буду ставить 2SA733, а стабилитроны возьму BZX 3V3 (хотя поставил BZX 3V9). ЖКИ также будет не указанный в схеме (такого найти не получилось), а более популярный WH0802А фирмы Winstar. Печатную плату развожу, руководствуясь размерами индикатора - по его ширине и высоте (высокие детали ложу горизонтально, электролиты применяю с уменьшенной высотой корпуса), регулятор контрастности в подобных устройствах я всегда распаиваю прямо на выводах самого индикатора. Таким образом, плата вышла размерами 6х6 см, монтаж по высоте равен высоте индикатора (около 1 см). Собранная плата с индикатором легко поместится в пачку от сигарет.

Настройка ESR

О, это отдельный разговор... Прочитав статью, создаётся мнение, что схему сможет настроить только инженер-программист в лаборатории с высокоточными приборами. Судите сами - автор предлагает настроить источники тока по миллиамперметру, гарантирующему точность в две цифры после запятой. Затем – делитель напряжения по вольтметру такой же точности (естественно подразумевается, что в этой точности нет ничего общего с "точностью" китайских показометров). Потом эти измеренные значения надо занести в текст неоткомпилированной программы, перегнать её в машинный код и зашить с этими поправками в МК. Нормально? Но, к счастью, автор очень подробно описал принцип работы своего устройства, почитав которое доходит, что сие чудо высокого полёта современной инженерной мысли может настроить и любой Ивашка с Дворца пионеров и даже вообще без всяких приборов. Всё, закрываем журнал и настраиваем так, как получилось у меня.

Включаем собранный прибор с прошитым и установленным на плату МК. Первым делом крутим регулятор контрастности до появления на экране ЖКИ чёткой надписи в две строки. Если её нет - проверяем монтаж в части сопряжения МК с ЖКИ и подачи питания на оба самых дорогих элемента этого устройства. А также правильность прошивки МК - не забываем про фузы – для PonyProg так:

Нажимаем на плате возле МК кнопку "Калибровка" - в прошивку внесётся поправка на скорость срабатывания входной части измерителя.
Следующий этап. Нам понадобится несколько новых электролитических конденсаторов высокого качества (не обязательно Low Esr) ёмкостью 220...470 мкФ разных партий, лучше всего - на разные напряжения (16в, 35в, 50в...). Подключаем любой из них к входным гнёздам прибора и начинаем подбирать резистор R2 в пределах 100...470 Ом (у меня получилось 300 Ом; можно применить временно цепочку постоянный+подстроечный) так, чтобы значение ёмкости на экране ЖКИ примерно было похоже на номинал конденсатора. К большой точности пока что стремиться не стОит - ещё будет корректироваться; затем проверить и с другими конденсаторами.

Дальше настраиваем измеритель ESR. Эх, придётся снова раскрыть журнал "Радио" - №7 за 2010 год стр.22 - там имеется табличка с типовыми значениями этого параметра для разных конденсаторов. Или же воспользоваться вот этой, найденной на бескрайних просторах Интернета. Кстати, такую табличку, при желании, можно будет приклеить в качестве шпаргалки на корпус будущего прибора под дисплеем. Как пользоваться такой табличкой, я думаю, понятно - скажем, получается, что типовое ЭПС конденсатора 100 мкФ на 35в находится где-то в районе 0,32 Ом:

В следующей табличке указаны максимальные значения ЭПС для электролитических конденсаторов. Если у измеряемого конденсатора оно будет заметно выше, то его уже нельзя использовать для работы в сглаживающем фильтре выпрямителя:

Подключаем конденсатор 220 мкФ и, незначительным подбором сопротивления резисторов R6, R9, R10 (на схеме и на моём сборочном чертеже обозначены со звёздочками), добиваемся показаний Esr, близких к табличным. Проверяем на всех имеющихся заготовленных эталонных конденсаторах, в т.ч. уже можно использовать и конденсаторы от 1 до 100 мкФ (не обращая пока что внимания на показания измерителя ёмкости).

Так как для измерения ёмкости конденсаторов от 150 мкФ и для измерителя ЭПС применяется один и тот же участок схемы, после подбора сопротивления этих резисторов несколько изменится точность показаний измерителя ёмкости. Теперь можно подстроить ещё сопротивление резистора R2, чтобы эти показания стали точнее. Другими словами, Ваша задача - подбирая сопротивление R2 - уточнить показания измерителя ёмкости, подстраивая резисторы в делителе компараторов - уточнить показания ESR-метра. Причём, приоритет надо отдавать измерителю ESR. О больших же ёмкостях - я думаю, каждый понимает, что если в аппарате установлен конденсатор на 1000 мкФ, то он будет работать хоть при ёмкости 950 мкФ, хоть при ёмкости 1100 мкФ - поэтому уделять внимание особой точности измерению ёмкости таких конденсаторов вряд ли целесообразно.

Тут может возникнуть вопрос - а нельзя ли вообще сразу и очень точно настроить измеритель ESR, подключая к его входу низкоомные высокоточные резисторы, калибруя прибор по ним? Нет, как раз это не тот случай - так можно настроить разного рода простые аналоговые измерители ЭПС, представляющие собой, грубо говоря, омметры "с наворотами". В этом же приборе используется способ измерения, основан на зарядке конденсатора током, - резистор же, понятное дело, заряжаться не может

Осталось настроить измеритель ёмкости конденсаторов диапазона 0,1...150 мкФ. Так как для этого в схеме предусмотрен отдельный источник тока, измерение ёмкости таких конденсаторов можно сделать очень точным. Подключаем конденсаторы малой ёмкости к входным гнёздам прибора и, подбором сопротивления R1 в пределах 3,3...6,8 кОм (у меня получилось 4,3к) добиваемся максимально точных показаний. Этого можно достичь, если в качестве эталонных применить не электролиты, а высокоточные конденсаторы К71-1 ёмкостью 0,15 мкФ с гарантированным отклонением 0,5 или 1%, подключая их как по одному, так и параллельными "батареями".

На этом настройка прибора закончена, можно поместить его в корпус и использовать по назначению

Ниже вы можете скачать печатную плату в формате LAY, сборочный чертеж и прошивку

Исходная версия измерителя: Радио - №7, 2010г.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 МК AVR 8-бит

ATtiny2313

1 В блокнот
DA1 Компаратор

LM393-N

1 В блокнот
DA2 Линейный регулятор

LM78L05

1 В блокнот
VT1, VT2 Биполярный транзистор

КТ3107Л

2 2SA733 В блокнот
VT3 MOSFET-транзистор

IRF530

1 В блокнот
VD1, VD2 Стабилитрон

КС133Г

2 BZX 3V3 В блокнот
VD3, VD4 Выпрямительный диод

1N4007

2 В блокнот
HG1 LCD-дисплей MT-08S2A 1 WH0802А В блокнот
C1, C3 Электролитический конденсатор 100мкФ 16В 2 В блокнот
C2, C4 Конденсатор 22 пФ 2 В блокнот
C5-C8 Конденсатор 0.1 мкФ 4 В блокнот
R1 Резистор

3.3...6.8 кОм

1 В блокнот
R2 Резистор

100...470 Ом

1 В блокнот
R3, R4 Резистор

2 кОм

2 В блокнот
R5, R7, R12, R13 Резистор

3 кОм

4 В блокнот
R6 Резистор

33 кОм

1

Читайте также: